Posted tagged ‘automobile’

MANUAL CHARGING CONTROL

August 23, 2011

01-wind up battery-crank up battery-battery storage technology-hand powered spinning re-charger battery

The Wind up battery is the endless independent source of power. It is the only tool you will need to charge your mobile phone batteries, notebook batteries, GPS or any other modern gadget which is in this information-packed world essential life companion. The use of wind up battery charger is easy and being that it is totally portable and independent power supply, it is a valuable part of accessory of every trekker’s, backpacker’s, traveler’s adventures journey. It is also an essential back up power supply for any critical emergency events when there is no power supply available nearby.


How does it work?

01-wind up battery- operation-working-twisting clockwise or anticlockwise makes charging

The wind up battery mechanism uses internal generator, which is usually hand-powered by spinning the handle on the device. The hand motion, in which AC alternator is driven by a crank converts human mechanical energy and generates the electrical power, by spinning magnets past a coil of wire, which is stored in battery. To charge the device, utilizing the wind up mechanism the hand crank needs to be pulled out of the folded position, and spun in clockwise/counterclockwise direction. After some time of cranking, when the device is charged the handle is folded into position and the device is available to use.

There are also foot powered wind up battery devices, which generate power and self charge by human energy through step action. These are able to jump-start a boat or automobile battery, and power a wide array of instruments and accessories and present a valuable and versatile tool for power supply.

The Devices using wind up mechanism

There are several devices on market which utilize the wind up mechanism. It can be used as a wind up battery charger, wind up flashlight, wind up radio, wind up clock, mp3 player, or a larger electricity supply unit. Usually there are hand cranks folded into the devices, which can be pulled out when needed. The wind up devices are a great way to promote environmentally clean green energy source as the power is derived through windup mechanism which efficiently harvests the human energy and converts it to electricity.

If you are an environmentally conscious consumer who likes to travel and have a power charger available for his electric devices and an emergency power supply then the wind up battery is the device to look for.

01-exploded view of wind up battery-wind up mechanism

BLOW MOULDING PROCESS

August 23, 2011

Today, when walking in your supermarket, it is increasingly difficult to find items packed in glass and jars.  Packaging for soft drinks, healthcare and beauty products, household chemicals and medicines, among other products, have switched from glass or metal to plastics.  Today the Blow Molding industry has expanded from simple plastic containers to plastic drums, gas tanks, automobile parts and toys in all shapes and sizes.

01-blow-molding-extrusion blow molding-injection blow molding-parison extrusion


Blow Molding (BM) process makes it possible to manufacture molded products economically, in unlimited quantities, with virtually no finishing required.  The basic process of blow molding involves a softened thermoplastic hollow form which is inflated against the cooled surface of a closed mold.  The expanded plastic form solidifies  into a hollow product.

Blow molded components are now seen all over the markets and industries for traditional materials, particularly in liquid packaging applications.  The last few decades saw the introduction of  Poly Ethylene (PE) squeeze bottles for washing liquids, Poly Vinyl Chloride (PVC) for cooking oil and fruits squash bottles, and Poly Ethylene Terephthalate (PET) for carbonated beverage bottles.  Nowadays, it is also used for the production of toys, automobile parts, accessories and many engineering components.

There are basically four types of blow moulding used in the production of plastic bottles, jugs and jars. These four types are:

  1. Extrusion blow molding,
  2. Injection blow molding,
  3. Stretch blow molding and
  4. Reheat and blow molding.

Extrusion blow molding is perhaps the simplest type of blow molding, whereby a hot tube of plastic material is dropped from an extruder and captured in a water cooled mold. Once the molds are closed, air is injected through the top or the neck of the container; just as if one were blowing up a balloon. When the hot plastic material is blown up and touches the walls of the mold the material “freezes” and the container now maintains its rigid shape. There are various types of shuttle, reciprocating and wheel style machines for the production of extrusion blown bottles. Shuttle or reciprocating type machines can be used for small, medium and high volume production with wheel machines being the most efficient for huge volume production of certain resins.


01-petblow-plastic products manufacturing-PET Preform-PET bottles-stretch blow molding

A typical apparatus consists of following major components i.e. blow pin, plunger, accumulator and lastly a mold.

Actually the process utilizes air pressure to inflate softened thermoplastic tube which is sealed at one end (also called as parision). This parision is constantly inflated and extruded. Then later on it is cut according to required dimensions. The temperature in Accumulator is maintained around 400 degree Celsius or so.

Stretch_blow_mold-dies-PET Pre form mold-household appliance mold

The mold consists of two split parts which have a semi-circular cross-section. Usually the air pressure which is applied in low pressure molding is about 50 to 250 psi. Various forms of blow molding used in industry today on a wide scale are Injection Blow Molding.

Injection Blow Molding though not used in industry, has very limited and specific applications like making small medicine plastic bottles etc. Extrusion blow molding is the simplest form of blow molding. A tube of plastic material which is generally maintained hot, is dropped from an extruder only to be captured in a water cooled mold. Once the molds are closed, air is injected through the top or the neck of the container and the tube is inflated just like a balloon. When the hot plastic material is blown up and touches the walls of the mold the material is cooled and the container now maintains a solid, rigid shape.

Now Stretch blow molding, this process requires the raw material to be formed in a pre-form using injection molding and later on stretch blow molding process can be applied.

The product range varies from various cylindrical components like bottles, cans, floats heater ducts in automobile parts and various small pipe fittings and hollow cylindrical parts can be produced in mass production.

The advantages are many like the tooling costs are very less as compared to injection molding, the part performance is excellent under pressure. Then the products have excellent environmental stress crack resistance. The products also perform excellently in high speed impact strength than even the metal components the process can be automated and used in mass production.

The disadvantages mainly raise environmental concerns. It depends on petroleum industry as any plastic industry depends. Also the cylindrical shapes are delicate so if the dimensions are not accurate then they result in scrap.

ULTIMATE ECO CAR

August 23, 2011

01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology

Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.


01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles


“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future.

Challenges of increasing power performance

In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace.

Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers.

ULTIMATE ECO CAR

August 23, 2011

01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology

Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.


01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles


“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future.

Challenges of increasing power performance

In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace.

Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers.

HOW FUEL CELL WORK?

August 23, 2011

An electrochemical reaction occurs between hydrogen and oxygen that converts chemical energy into electrical energy.

01-how fuel cell works-proton exchange membrane-hydrogen fuel cell

Think of them as big batteries, but ones that only operate when fuel—in this case, pure hydrogen—is supplied to them. When it is, an electrochemical reaction takes place between the hydrogen and oxygen that directly converts chemical energy into electrical energy. Various types of fuel cells exist, but the one automakers are primarily focusing on for fuel cell cars is one that relies on a proton-exchange membrane, or PEM. In the generic PEM fuel cell pictured here, the membrane lies sandwiched between a positively charged electrode (the cathode) and a negatively charged electrode (the anode). In the simple reaction that occurs here rests the hope of engineers, policymakers, and ordinary citizens that someday we’ll drive entirely pollution-free cars.

Here’s what happens in the fuel cell: When hydrogen gas pumped from the fuel tanks arrives at the anode, which is made of platinum, the platinum catalyzes a reaction that ionizes the gas. Ionization breaks the hydrogen atom down into its positive ions (hydrogen protons) and negative ions (electrons). Both types of ions are naturally drawn to the cathode situated on the other side of the membrane, but only the protons can pass through the membrane (hence the name “proton-exchange”). The electrons are forced to go around the PEM, and along the way they are shunted through a circuit, generating the electricity that runs the car’s systems.

Using the two different routes, the hydrogen protons and the electrons quickly reach the cathode. While hydrogen is fed to the anode, oxygen is fed to the cathode, where a catalyst creates oxygen ions. The arriving hydrogen protons and electrons bond with these oxygen ions, creating the two “waste products” of the reaction—water vapor and heat. Some of the water vapor gets recycled for use in humidification, and the rest drips out of the tailpipe as “exhaust.” This cycle proceeds continuously as long as the car is powered up and in motion; when it’s idling, output from the fuel cell is shut off to conserve fuel, and the ultra capacitor takes over to power air conditioning and other components.

A single hydrogen fuel cell delivers a low voltage, so manufacturers “stack” fuel cells together in a series, as in a dry-cell battery. The more layers, the higher the voltage. Electrical current, meanwhile, has to do with surface area. The greater the surface area of the electrodes, the greater the current. One of the great challenges automakers face is how to increase electrical output (voltage times current) to the point where consumers get the power and distance they’re accustomed to while also economizing space in the tight confines of an automobile.