Posted tagged ‘cross sectional area’

Variable Turbo Chargers Geometry (VTG)

September 25, 2011

Variable geometry turbochargers (VGTs) are a family of turbochargers, usually designed to allow the effective aspect ratio (sometimes called A/R Ratio) of the turbo to be altered as conditions change. This is done because optimum aspect ratio at low engine speeds is very different from that at high engine speeds. If the aspect ratio is too large, the turbo will fail to create boost at low speeds; if the aspect ratio is too small, the turbo will choke the engine at high speeds, leading to high exhaust manifold pressures, high pumping losses, and ultimately lower power output. By altering the geometry of the turbine housing as the engine accelerates, the turbo’s aspect ratio can be maintained at its optimum. Because of this, VGTs have a minimal amount of lag, have a low boost threshold, and are very efficient at higher engine speeds. VGTs do not require a waste gate.

01-variable turbine geometry-turbocharger-vtg-sequence

Most common designs
The two most common implementations include a ring of aerodynamically-shaped vanes in the turbine housing at the turbine inlet. Generally for light duty engines (passenger cars, race cars, and light commercial vehicles) the vanes rotate in unison to vary the gas swirl angle and the cross sectional area. Generally for heavy duty engines the vanes do not rotate, but instead the axial width of the inlet is selectively blocked by an axially sliding wall (either the vanes are selectively covered by a moving slotted shroud, or the vanes selectively move vs a stationary slotted shroud). Either way the area between the tips of the vanes changes, leading to a variable aspect ratio.

01-normal_turbo charger-vtg turbo-turbine section-compressor section

Actuation
Often the vanes are controlled by a membrane actuator identical to that of a waste gate, however increasingly electric servo actuation is used. Hydraulic actuators have also been used in some applications.

01-Twincharger_theory-turbocharger layout diagram

Main suppliers

Several companies supply the rotating vane type of variable geometry turbocharger, including Garrett (Honeywell), Borg Warner and MHI (Mitsubishi Heavy Industries). The rotating vane design is mostly limited to small engines and/or to light duty applications (passenger cars, race cars and light commercial vehicles). The only supplier of the sliding vane type of variable geometry turbocharger is Cummins Turbo Technologies (Holset), who are effectively the sole supplier of variable geometry turbochargers for applications involving large engines and heavy duty use (i.e. trucks and off highway applications).

01-turbo-parts-turbocharger section-compressor air discharge

Other common uses
In trucks, VG turbochargers are also used to control the ratio of exhaust re-circulated back to the engine inlet (they can be controlled to selectively increase the exhaust manifold pressure exceeds the inlet manifold pressure, which promotes exhaust gas recirculation (EGR)). Although excessive engine back pressure is detrimental to overall fuel economy, ensuring a sufficient EGR rate even during transient events (e.g. gear changes) can be sufficient to reduce nitrogen oxide emissions down to that required by emissions legislation (e.g. Euro 5 for Europe and EPA 10 for the USA).

01-turbocharger-Vtg-cross sectional diagram-control system

Another use for the sliding vane type of turbocharger is as downstream engine exhaust brake (non-decompression type), so that an extra exhaust throttle valve isn’t needed. Also the mechanism can be deliberately modified to reduce the turbine efficiency in a predefined position. This mode can be selected to sustain a raised exhaust temperature to promote “light-off” and “regeneration” of a diesel particulate filter (this involves heating the carbon particles stuck in the filter until they oxidize away in a semi-self sustaining reaction – rather like the self-cleaning process some ovens offer). Actuation of a VG turbocharger for EGR flow control or to implement braking or regeneration modes generally requires hydraulic or electric servo actuation.

Design of Screw Conveyor

September 8, 2011

01-screw conveyor-screw conveyor design-screw conveyor design calculations-screw conveyor housing- screw conveyor flights- screw conveyor formulae- screw conveyor flow rates

The size of screw conveyor depends on two factors

1. The capacity of the conveyor

2. The lump size of the material to be conveyed (Maximum dimensions of the particle)

Usually there are three ranges of lump sizes which are considered for selection of screw size. These are:

· A mixture of lumps and fines in which not more than 10% are lumps ranging from maximum size to one half of the maximum, and 90% are lumps smaller than one half of the maximum size.

· A mixture of lump and fines in which not more than 25% are lumps ranging from the maximum size to one half of the maximum, and 75% are lumps smaller than one half of the maximum size.

· A mixture of lump only in which 95% or more are lumps ranging from maximum size to one half of the maximum size and 5% or less are lumps less than one tenth of the maximum size.

The allowable size of a lump in a screw conveyor is a function of the radial clearance between the outside diameter of the central pipe and the radius of the inside of the screw trough, as well as the proportion of the lumps in the mixture.

The lump size of the material affects the selection of screw diameter which should be at least 12 times larger than the lump size of a sized material and four times larger than the largest lumps of an un-sized material.

Example, if screw diameter is 250mm means radial clearance is 105mm, & Maximum lump size is 60mm of 10% lumps.

Capacity of Screw Conveyor:

01-screw conveyor capacity calculation-screw conveyor manufacturers-screw conveyor shaft- screw conveyor capacity- screw conveyor components- screw conveyor bearings

 

The capacity of a screw conveyor depends on the screw diameter, screw pitch, speed of the screw and the loading efficiency of the cross sectional area of the screw. The capacity of a screw conveyor with a continuous screw:

Q = V. ρ

Q = 60. (π/4).D2.S.n.ψ.ρ.C

Where,

Q = capacity of a screw conveyor

V = Volumetric capacity in m3/Hr

ρ = Bulk density of the material, kg/m3

D = Nominal diameter of Screw in m

S = Screw pitch in m

N = RPM of screw

Ψ = Loading efficiency of the screw

C = Factor to take into account the inclination of the conveyor

 

Screw Pitch:

Commonly the screw pitch is taken equal to the diameter of the screw D. However it may range 0.75 – 1.0 times the diameter of the screw.

 

 

 

 

01-screw conveyor pitch- screw conveyor inlet- screw conveyor output- screw conveyor blade- screw conveyor motor

Screw Diameter:

 

Nominal Size D Trough height from center of screw shaft to upper edge of the trough Trough width C Thickness of Tough Tubular shaft (d1 * Thickness)

Outside diameter of solid shaft

Coupling diameter of shaft
Heavy Duty Medium Duty Light Duty
100 63 120 2 1.6 33.7*2.5 30 25
125 75 145 2 1.6 33.7*2.5 30 25
160 90 180 5 3.15 1.6 42.4*2.5 35 40
200 112 220 5 3.15 2 48.3*3.5 40 40
250 140 270 5 3.15 2 60.3*4 50 50
315 180 335 5 3.15 76.1*5 60 50
400 224 420 5 3.15 76.1*5 60 75
500 280 530 5 3.15 88.9*5 70 75

RPM of Screw:

The usual range of RPM of screw is 10 to 165. It depends on the diameter of screw and the type of material (Max RPM of screw conveyor is 165)

Loading efficiency:

The value of loading efficiency should be taken large for materials which are free flowing and non abrasive, while for materials which are not free flowing and or abrasive in nature, the value should be taken low:

Ψ = 0.12 to 0.15 for abrasive material

= 0.25 to 0.3 for mildly abrasive material

= 0.4 to 0.45 for non abrasive free flowing materials

Inclination Factor:

The inclination factor C is determined by the angle of screw conveyor with the horizontal.

 

Angle of screw with the horizontal 10° 15° 20°
Value of factor C 1 0.9 0.8 0.7 0.65

Types of screw flight:

The screw of the conveyor may be right hand or left hand, the right hand type being the usual design. The threads of the screw may be single, double or triple.

The flight of the screws may be made in either of the two ways:

1. As Helicoids

2. As Sectional flight

Helicoids Flight:

They are formed from a flat bar or strip into a continues helix. The threads are thinner at the outer edge and thicker at the inner edge.

01-screw conveyor types- screw conveyor trough- screw conveyor theory- screw conveyor thrust bearings- screw conveyor torque-helicoid flights-continues helix-flight of screws

Sectional flights:

Sectional flights are formed from a flat disc and the thickness of the thread is uniform throughout. A continuous helix is made by joining a number of sectional flights together on a piece of pipe and butt welded them. Various styles of screw flights are in use, depending on the service required.

01- screw conveyor technology- screw conveyor incline- screw conveyor introduction- screw conveyor inlet- screw conveyor information- screw conveyor output-sectional flights-continuous helix-short pitch

Some of the typical configurations are:

1. Short pitch or continuous flight:

If the conveyor is required to handle dry granular or powdered materials that do not pack, this style of flight may be selected. It is of regular construction and recommended for inclined conveyors having a slope of 20 or more, including vertical conveyors. This style is extensively used as feeder screw.

2. Ribbon flight:

If the conveyor is to handle lumpy, clinging, sticky, gummy or viscous substances, this type flight may be selected. It consists of continuous helical flight formed from steel bar and secured to the pipe by supporting lugs.

01-screw conveyor part- screw conveyor pitch- screw conveyor power- screw conveyor length- screw conveyor layout- screw conveyor lift- screw conveyor loading-ribbon flight-cut flight

3. Cut flight:

In this type of flight screws have notches cut in the periphery of the flight. These notches supplement the conveying with moderate mixing action. They are recommended for conveyors required to handle light, fine, granular or flaky materials.

01-screw conveyor length- screw conveyor layout- screw conveyor lift- screw conveyor loading-cut flight-screw flight-sectional flight

4. Cut and folded flights:

This type of flight is characterized by notches as in cut flight, together with folded segments. This type of flight creates agitation and aeration resulting in better mixing. This type of flight is used to handle light or medium weight materials having fine, granular or flaky materials.

5. Some screw conveyors have cut flight with paddles mounted at regular intervals. The paddles counteract the flow of material past the flight resulting in greater agitation and mixing.

6. Sometimes screws are made of stainless steel to suit special requirements, like the sanitation requirements for handling food, drugs and other hygienic materials.