Posted tagged ‘electrical motor’

Magnetic Levitation Train

September 29, 2011

Love to turn a 45 minute car ride to an 8 minute blur?

China was the first to country to have an up and running Maglev you could buy tickets to. Back in 1979 the Germans developed the 1st Magnetic levitation (Maglev) train.  The first to overcome the limitation of wheel and rail, because the rail moves entirely without contact!

This is a wonderful topic for your mechanical engineering seminar as well as project if you dare to make a working model.

The functions of the wheel and rail on a normal rail road including support guidance propulsion and braking are accomplished through an electro magnetic levitation and propulsion system. The mechanics have been replaced by electronics. Support Magnets draw the vehicle towards the guide way from below. While, guidance magnets hold’s the vehicle laterally on track. These support and guidance magnets are mounted on both sides of the vehicle along its entire length. An electronic control system ensures that it levitates at a constant height above the guide way. The Maglev train is propelled and braked by a synchronous long stator linear motor. This motor is not located in the vehicle itself but rather in the guide way. It functions on the same principle as a traditional rotating electrical motor, whose stator has been cut open, unrolled and stretched length wise along both sides of the guide way. But, instead of a rotating magnetic field a traveling magnetic field is generated in the windings, one that pulls the vehicle along the guide way without contact.

The guide way can be elevated where it makes ecological sense. in this way it won’t divide the landscape or developed areas and the area beneath the guide way can continue to be used as before. The guide way can be built at ground level to allow easier co location with existing transportation systems. Therefore, the guide way can be adapted to the landscape instead of being the other way round.

Maglev Train

The operation control system controls and safe guards the vehicle’s switches, guide ways and stations along the maglev route. The vehicle communicates with the control system by means of directional radio data transmission. The vehicle’s location is monitored by means of a location reference system integrated into the guide way. The only motor section in operation along the guide way, is the one in which the vehicle is currently traveling. When the vehicle passes from one section to the next, the new motor section is automatically switched on. More power is supplied on gradients and acceleration segments along the route than on flat segments this way the propulsion power is distributed very economically. It is always available exactly where it is needed.

The technology’s success in India could ultimately hinge on a combination public funding and private investments.

 

References: