Posted tagged ‘electricity’

The Power Of Foot Steps into Energy

September 28, 2011

A team of college students came together to design a new traffic intersection that transforms the power of footsteps into energy. The theories behind piezoelectricity, or the conversion of movements and vibrations into electricity, have existed for over 100 years. Very few applications of piezoelectricity exist in this modern age. Upon researching this technology, they immediately realized a multitude of different avenues one could take to utilize it.

Piezoelectric plates are placed under the cross-walk so that vibrations and pressure fluctuations caused by cars and pedestrians can be converted into electricity.  The electricity is piped to power street lamps, traffic signals, cameras and other electronic devices located in the vicinity. What an awesome idea for busy metropolises.

01-new piezoelectric charging-fully self sustaining traffic intersection-power of foot steps into energy-piezo electricity theory

02-new piezoelectric charging-fully self sustaining traffic intersection-power of foot steps into energy-piezo electricity theory

  

03-new piezoelectric charging-fully self sustaining traffic intersection-power of foot steps into energy-piezo electricity theory

04-new piezoelectric charging-fully self sustaining traffic intersection-power of foot steps into energy-piezo electricity theory

05-new piezoelectric charging-fully self sustaining traffic intersection-power of foot steps into energy-piezo electricity theory

06-new piezoelectric charging-fully self sustaining traffic intersection-power of foot steps into energy-piezo electricity theory

07-new piezoelectric charging-fully self sustaining traffic intersection-power of foot steps into energy-piezo electricity theory

Mechanical Engineer

September 16, 2011

What is the Mechanical Engineer?

01-mechanical-engineer-technology

Mechanical engineering is a broad field of engineering that involves the use of physical principles for analysis, design, manufacture and maintenance of mechanical systems. Traditionally, it has been the branch of engineering that through the application of physical principles has enabled the creation of useful devices, as tools and machines.

Mechanical engineers use principles such as heat, force and the conservation of mass and energy to analyze static and dynamic physical systems, helping to design objects. Mechanical Engineering is the branch of machinery, equipment and facilities bearing in mind ecological and economic aspects for the benefit of society. To do their job, mechanical engineering analyze needs, formulate and solve technical problems through an interdisciplinary, and relies on scientific developments, translating into elements, machines, equipment and facilities to provide adequate service through the rational use and efficient use of available resources.

01-mechanical engineer-technology-projects

Engineering is dedicated to designing, building, negotiation and component maintenance. It required new devices with complex functions in the movement or that withstand large forces, so it was necessary that this new discipline to study the movement and balance. It was also necessary to find a new way of running the machines as originally used by human or animal power. The use of machines that run on energy from the steam, coal, gas and electricity brought great progress.

MANUAL CHARGING CONTROL

August 23, 2011

01-wind up battery-crank up battery-battery storage technology-hand powered spinning re-charger battery

The Wind up battery is the endless independent source of power. It is the only tool you will need to charge your mobile phone batteries, notebook batteries, GPS or any other modern gadget which is in this information-packed world essential life companion. The use of wind up battery charger is easy and being that it is totally portable and independent power supply, it is a valuable part of accessory of every trekker’s, backpacker’s, traveler’s adventures journey. It is also an essential back up power supply for any critical emergency events when there is no power supply available nearby.


How does it work?

01-wind up battery- operation-working-twisting clockwise or anticlockwise makes charging

The wind up battery mechanism uses internal generator, which is usually hand-powered by spinning the handle on the device. The hand motion, in which AC alternator is driven by a crank converts human mechanical energy and generates the electrical power, by spinning magnets past a coil of wire, which is stored in battery. To charge the device, utilizing the wind up mechanism the hand crank needs to be pulled out of the folded position, and spun in clockwise/counterclockwise direction. After some time of cranking, when the device is charged the handle is folded into position and the device is available to use.

There are also foot powered wind up battery devices, which generate power and self charge by human energy through step action. These are able to jump-start a boat or automobile battery, and power a wide array of instruments and accessories and present a valuable and versatile tool for power supply.

The Devices using wind up mechanism

There are several devices on market which utilize the wind up mechanism. It can be used as a wind up battery charger, wind up flashlight, wind up radio, wind up clock, mp3 player, or a larger electricity supply unit. Usually there are hand cranks folded into the devices, which can be pulled out when needed. The wind up devices are a great way to promote environmentally clean green energy source as the power is derived through windup mechanism which efficiently harvests the human energy and converts it to electricity.

If you are an environmentally conscious consumer who likes to travel and have a power charger available for his electric devices and an emergency power supply then the wind up battery is the device to look for.

01-exploded view of wind up battery-wind up mechanism

NANO GENERATOR

August 23, 2011

01-cellphone-charger-nanogenerator

After six years of intensive effort, scientists are reporting development of the first commercially viable Nano generator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity.

This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets.

The latest improvements have resulted in a Nano generator powerful enough to drive commercial liquid-crystal displays, light-emitting diodes and laser diodes. By storing the generated charges using a capacitor, the output power is capable to periodically drive a sensor and transmit the signal wirelessly.

01-nanogenerator-energize LED light and LCD display-future power generaration technologies-power production by body movement

If we can sustain the rate of improvement, the Nano generator may find a broad range of other applications that require more power.


Example:

  • Personal electronic devices powered by footsteps activating Nano generators inside the sole of a shoe;
  • Implanted insulin pumps powered by a heart beat; and
  • Environmental sensors powered by Nano generators flapping in the breeze.

01-heart-powered-pacemaker-insulin pumping by nano generator

Preparation:

The key to the technology is zinc oxide (ZnO) nanowires. ZnO nanowires are piezoelectric — they can generate an electric current when strained or flexed. That movement can be virtually any body movement, such as walking, a heartbeat, or blood flowing through the body. The nanowires can also generate electricity in response to wind, rolling tires, or many other kinds of movement.

01-concept-NanoGenerator-Zinc oxide Nano wires

The diameter of a ZnO nanowire is so small that 500 of the wires can fit inside the width of a single human hair. Scientist found a way to capture and combine the electrical charges from millions of the Nano scale zinc oxide wires. They also developed an efficient way to deposit the nanowires onto flexible polymer chips, each about a quarter the size of a postage stamp. Five Nano generators stacked together produce about 1 micro Ampere output current at 3 volts — about the same voltage generated by two regular AA batteries (about 1.5 volts each).

While a few volts may not seem like much, it has grown by leaps and bounds over previous versions of the Nano generator. “Additional nanowires and more Nano generators, stacked together, could produce enough energy for powering larger electronics, such as an iPod or charging a cell phone.”

NANO GENERATOR

August 23, 2011

01-cellphone-charger-nanogenerator

After six years of intensive effort, scientists are reporting development of the first commercially viable Nano generator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity.

This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets.

The latest improvements have resulted in a Nano generator powerful enough to drive commercial liquid-crystal displays, light-emitting diodes and laser diodes. By storing the generated charges using a capacitor, the output power is capable to periodically drive a sensor and transmit the signal wirelessly.

01-nanogenerator-energize LED light and LCD display-future power generaration technologies-power production by body movement

If we can sustain the rate of improvement, the Nano generator may find a broad range of other applications that require more power.


Example:

  • Personal electronic devices powered by footsteps activating Nano generators inside the sole of a shoe;
  • Implanted insulin pumps powered by a heart beat; and
  • Environmental sensors powered by Nano generators flapping in the breeze.

01-heart-powered-pacemaker-insulin pumping by nano generator

Preparation:

The key to the technology is zinc oxide (ZnO) nanowires. ZnO nanowires are piezoelectric — they can generate an electric current when strained or flexed. That movement can be virtually any body movement, such as walking, a heartbeat, or blood flowing through the body. The nanowires can also generate electricity in response to wind, rolling tires, or many other kinds of movement.

01-concept-NanoGenerator-Zinc oxide Nano wires

The diameter of a ZnO nanowire is so small that 500 of the wires can fit inside the width of a single human hair. Scientist found a way to capture and combine the electrical charges from millions of the Nano scale zinc oxide wires. They also developed an efficient way to deposit the nanowires onto flexible polymer chips, each about a quarter the size of a postage stamp. Five Nano generators stacked together produce about 1 micro Ampere output current at 3 volts — about the same voltage generated by two regular AA batteries (about 1.5 volts each).

While a few volts may not seem like much, it has grown by leaps and bounds over previous versions of the Nano generator. “Additional nanowires and more Nano generators, stacked together, could produce enough energy for powering larger electronics, such as an iPod or charging a cell phone.”

ULTIMATE ECO CAR

August 23, 2011

01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology

Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.


01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles


“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future.

Challenges of increasing power performance

In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace.

Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers.

ULTIMATE ECO CAR

August 23, 2011

01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology

Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.


01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles


“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future.

Challenges of increasing power performance

In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace.

Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers.