Posted tagged ‘future’

SOLAR POWER IN CARS

September 10, 2011

solar-auto-carsSolar energy is one of the many renewable sources of energy that is used for fueling vehicles, running consumer products and for the efficient running of homes and business establishments. Solar power is harnessed with the help of solar cells and solar panels which are placed in the item that has to be powered.

The solar car is something that is envisioned to materialize in the future, with some countries already having solar cars racing across countries.
With this, it is proven that it is viable to indeed produce and manufacture solar power cars in bulk, in the near future so that everyone will soon own a solar power car.

Of course, once solar power cars are manufactured, it does not implicate that all other fuel sources for cars on highways will be removed. All that is done in solar power cars is the supplementation of traditional fuel with solar energy so that you save not only on your economy, but also save the environment in more ways than one every year.

The solar power cars that are used in races today run only on solar power, and thus look odd in appearance. This is because these cars are designed in such a way that they can collect maximum solar energy with which it is possible for the car to gain the required speed and desired efficiency.

The solar cells used in solar power cars are large, and usually cover the entire vehicle. However in case of commercial uses, solar cells are much smaller and designed so that the vehicle not only looks attractive, but is also efficient in its functioning. Solar cars can be used for short commutes in town as these cars can work only on solar energy.

The batteries found in the vehicle stores excess solar power so that this power can be used when solar power is not available on demand like on cloudy days and at nighttime. The engines found in these solar power cars are very much like the engines found in electric cars found today. In addition to this, the cars are lightweight, so that solar power can be used more efficiently.

At present, there are many types of solar power cars in the development stage today, which are also available for sale. However as these cars are in the developmental stage, the car is not available to the general public. With so many benefits found in solar power cars, its cost will not be much higher than the cost of the traditionally powered vehicles of today.

Another benefit of solar power cars is there is no hassle of stopping at gas stations for gas nor is there the need of getting worried of rising gasoline costs. With a solar power car, you save on the money that you would have otherwise have needed for buying fuel to run your car. In addition to this, with solar power cars you will be doing your bit in stopping global warming problems as there are no fuel emissions from solar power cars.

NANO GENERATOR

August 23, 2011

01-cellphone-charger-nanogenerator

After six years of intensive effort, scientists are reporting development of the first commercially viable Nano generator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity.

This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets.

The latest improvements have resulted in a Nano generator powerful enough to drive commercial liquid-crystal displays, light-emitting diodes and laser diodes. By storing the generated charges using a capacitor, the output power is capable to periodically drive a sensor and transmit the signal wirelessly.

01-nanogenerator-energize LED light and LCD display-future power generaration technologies-power production by body movement

If we can sustain the rate of improvement, the Nano generator may find a broad range of other applications that require more power.


Example:

  • Personal electronic devices powered by footsteps activating Nano generators inside the sole of a shoe;
  • Implanted insulin pumps powered by a heart beat; and
  • Environmental sensors powered by Nano generators flapping in the breeze.

01-heart-powered-pacemaker-insulin pumping by nano generator

Preparation:

The key to the technology is zinc oxide (ZnO) nanowires. ZnO nanowires are piezoelectric — they can generate an electric current when strained or flexed. That movement can be virtually any body movement, such as walking, a heartbeat, or blood flowing through the body. The nanowires can also generate electricity in response to wind, rolling tires, or many other kinds of movement.

01-concept-NanoGenerator-Zinc oxide Nano wires

The diameter of a ZnO nanowire is so small that 500 of the wires can fit inside the width of a single human hair. Scientist found a way to capture and combine the electrical charges from millions of the Nano scale zinc oxide wires. They also developed an efficient way to deposit the nanowires onto flexible polymer chips, each about a quarter the size of a postage stamp. Five Nano generators stacked together produce about 1 micro Ampere output current at 3 volts — about the same voltage generated by two regular AA batteries (about 1.5 volts each).

While a few volts may not seem like much, it has grown by leaps and bounds over previous versions of the Nano generator. “Additional nanowires and more Nano generators, stacked together, could produce enough energy for powering larger electronics, such as an iPod or charging a cell phone.”

NANO GENERATOR

August 23, 2011

01-cellphone-charger-nanogenerator

After six years of intensive effort, scientists are reporting development of the first commercially viable Nano generator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity.

This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets.

The latest improvements have resulted in a Nano generator powerful enough to drive commercial liquid-crystal displays, light-emitting diodes and laser diodes. By storing the generated charges using a capacitor, the output power is capable to periodically drive a sensor and transmit the signal wirelessly.

01-nanogenerator-energize LED light and LCD display-future power generaration technologies-power production by body movement

If we can sustain the rate of improvement, the Nano generator may find a broad range of other applications that require more power.


Example:

  • Personal electronic devices powered by footsteps activating Nano generators inside the sole of a shoe;
  • Implanted insulin pumps powered by a heart beat; and
  • Environmental sensors powered by Nano generators flapping in the breeze.

01-heart-powered-pacemaker-insulin pumping by nano generator

Preparation:

The key to the technology is zinc oxide (ZnO) nanowires. ZnO nanowires are piezoelectric — they can generate an electric current when strained or flexed. That movement can be virtually any body movement, such as walking, a heartbeat, or blood flowing through the body. The nanowires can also generate electricity in response to wind, rolling tires, or many other kinds of movement.

01-concept-NanoGenerator-Zinc oxide Nano wires

The diameter of a ZnO nanowire is so small that 500 of the wires can fit inside the width of a single human hair. Scientist found a way to capture and combine the electrical charges from millions of the Nano scale zinc oxide wires. They also developed an efficient way to deposit the nanowires onto flexible polymer chips, each about a quarter the size of a postage stamp. Five Nano generators stacked together produce about 1 micro Ampere output current at 3 volts — about the same voltage generated by two regular AA batteries (about 1.5 volts each).

While a few volts may not seem like much, it has grown by leaps and bounds over previous versions of the Nano generator. “Additional nanowires and more Nano generators, stacked together, could produce enough energy for powering larger electronics, such as an iPod or charging a cell phone.”

ULTIMATE ECO CAR

August 23, 2011

01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology

Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.


01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles


“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future.

Challenges of increasing power performance

In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace.

Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers.

ULTIMATE ECO CAR

August 23, 2011

01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology

Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.


01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles


“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future.

Challenges of increasing power performance

In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace.

Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers.