Posted tagged ‘height’


September 10, 2011

The working of an automobile engine follows the same principle as an internal combustion engine. Air, from outside, enters the engine through the air cleaner and reaches the throttle plate.
The pedal in your car is the control for the amount of air that you would want to be taken in, and you control it by pressing on this gas pedal.
The air is then distributed through the intake manifold of the cylinders.

At some point fuel is injected into the air stream, and the mixture vaporizes and is drawn into the cylinders as they start their intake stroke.

This way, when the cylinder has reached its bottom, it has drawn in sufficient mixture. As it moves up, compressing the mixture, the spark plug ignites the mixture, and as the powerful gas formed expands, it pushes the cylinder to the bottom with the cylinder once again drawing in the mixture.

In designing automobile engines, you need to be a specialist in automobile engineering.
The consideration that is taken while designing such an engine is whether it should be a carburetor or a diesel one. carburetor engines are most commonly found in passenger cars and low capacity trucks, while trucks with a capacity over two tons are fitted with diesel engines, including dump trucks, trailer tractors and bus.

Increasingly the medium and low-capacity vehicles are being fitted with diesel engines, since the fuel consumption of these engines are 30% to 50% lower than the carburetor engines.
Diesel engines not only cost more, but maintenance is much more expensive than the other type of engine. Diesels require more metal parts per kilowatt.
The critical parts of diesel engines are made of alloy steel, and the fuel injection system is much more expensive than carburetor engines.

However, the cost of manufacturing carburetor engines has increased with the use of higher mechanical grade components, considering the thermal loads of the material used. At the same time the use of high alloys and increase in production costs have contributed to the higher price of such engines.

There is a sharp rise in using aluminum alloys in design of carburetor engines in passenger cars, and with the use of high octane petrol, the cost of operation of these cars have come down extensively. Using alloy steel in constructing the engine body and other parts of the engine, makes the car lighter and hence fuel consumption goes down substantially.

The main parts that are made of high steel alloy are the main casting of the engine, the cylinder head, water and oil pumps, oil filter housing, end covers of the generator and starter, and the intake pipes. It has been observed that by using high steel alloys, the weight of the car is reduced by 35%.

The power per liter, per unit of piston area, and the brake effective pressure are 6% to 8% lower in air-cooled engines, compared to engines having liquid cooling mechanism. This is due to the fact that in engines with liquid cooling there are great losses in cylinder charging caused by the high temperature in pipes, ducts in the head, cylinder walls and head, etc.

The size of air cooled engines are much bigger than the engines with liquid cooling having the same capacity, and this is because the cylinder axes difference is larger in air-cooled engines. Taking account of the radiator dimensions, if both engines are compared, the air-cooled engine will vary slightly with its height a little longer than or approximately the same length as the water-cooled engine. As far as the width and the height is concerned both engines are about the same.

The auxiliary units of the feed and ignition, and generator and starter systems are a bit difficult to fit on the body of the air-cooled engines, because of the presence of hoods and having a danger of over-heating.

Design of Screw Conveyor

September 8, 2011

01-screw conveyor-screw conveyor design-screw conveyor design calculations-screw conveyor housing- screw conveyor flights- screw conveyor formulae- screw conveyor flow rates

The size of screw conveyor depends on two factors

1. The capacity of the conveyor

2. The lump size of the material to be conveyed (Maximum dimensions of the particle)

Usually there are three ranges of lump sizes which are considered for selection of screw size. These are:

· A mixture of lumps and fines in which not more than 10% are lumps ranging from maximum size to one half of the maximum, and 90% are lumps smaller than one half of the maximum size.

· A mixture of lump and fines in which not more than 25% are lumps ranging from the maximum size to one half of the maximum, and 75% are lumps smaller than one half of the maximum size.

· A mixture of lump only in which 95% or more are lumps ranging from maximum size to one half of the maximum size and 5% or less are lumps less than one tenth of the maximum size.

The allowable size of a lump in a screw conveyor is a function of the radial clearance between the outside diameter of the central pipe and the radius of the inside of the screw trough, as well as the proportion of the lumps in the mixture.

The lump size of the material affects the selection of screw diameter which should be at least 12 times larger than the lump size of a sized material and four times larger than the largest lumps of an un-sized material.

Example, if screw diameter is 250mm means radial clearance is 105mm, & Maximum lump size is 60mm of 10% lumps.

Capacity of Screw Conveyor:

01-screw conveyor capacity calculation-screw conveyor manufacturers-screw conveyor shaft- screw conveyor capacity- screw conveyor components- screw conveyor bearings


The capacity of a screw conveyor depends on the screw diameter, screw pitch, speed of the screw and the loading efficiency of the cross sectional area of the screw. The capacity of a screw conveyor with a continuous screw:

Q = V. ρ

Q = 60. (π/4).D2.S.n.ψ.ρ.C


Q = capacity of a screw conveyor

V = Volumetric capacity in m3/Hr

ρ = Bulk density of the material, kg/m3

D = Nominal diameter of Screw in m

S = Screw pitch in m

N = RPM of screw

Ψ = Loading efficiency of the screw

C = Factor to take into account the inclination of the conveyor


Screw Pitch:

Commonly the screw pitch is taken equal to the diameter of the screw D. However it may range 0.75 – 1.0 times the diameter of the screw.





01-screw conveyor pitch- screw conveyor inlet- screw conveyor output- screw conveyor blade- screw conveyor motor

Screw Diameter:


Nominal Size D Trough height from center of screw shaft to upper edge of the trough Trough width C Thickness of Tough Tubular shaft (d1 * Thickness)

Outside diameter of solid shaft

Coupling diameter of shaft
Heavy Duty Medium Duty Light Duty
100 63 120 2 1.6 33.7*2.5 30 25
125 75 145 2 1.6 33.7*2.5 30 25
160 90 180 5 3.15 1.6 42.4*2.5 35 40
200 112 220 5 3.15 2 48.3*3.5 40 40
250 140 270 5 3.15 2 60.3*4 50 50
315 180 335 5 3.15 76.1*5 60 50
400 224 420 5 3.15 76.1*5 60 75
500 280 530 5 3.15 88.9*5 70 75

RPM of Screw:

The usual range of RPM of screw is 10 to 165. It depends on the diameter of screw and the type of material (Max RPM of screw conveyor is 165)

Loading efficiency:

The value of loading efficiency should be taken large for materials which are free flowing and non abrasive, while for materials which are not free flowing and or abrasive in nature, the value should be taken low:

Ψ = 0.12 to 0.15 for abrasive material

= 0.25 to 0.3 for mildly abrasive material

= 0.4 to 0.45 for non abrasive free flowing materials

Inclination Factor:

The inclination factor C is determined by the angle of screw conveyor with the horizontal.


Angle of screw with the horizontal 10° 15° 20°
Value of factor C 1 0.9 0.8 0.7 0.65

Types of screw flight:

The screw of the conveyor may be right hand or left hand, the right hand type being the usual design. The threads of the screw may be single, double or triple.

The flight of the screws may be made in either of the two ways:

1. As Helicoids

2. As Sectional flight

Helicoids Flight:

They are formed from a flat bar or strip into a continues helix. The threads are thinner at the outer edge and thicker at the inner edge.

01-screw conveyor types- screw conveyor trough- screw conveyor theory- screw conveyor thrust bearings- screw conveyor torque-helicoid flights-continues helix-flight of screws

Sectional flights:

Sectional flights are formed from a flat disc and the thickness of the thread is uniform throughout. A continuous helix is made by joining a number of sectional flights together on a piece of pipe and butt welded them. Various styles of screw flights are in use, depending on the service required.

01- screw conveyor technology- screw conveyor incline- screw conveyor introduction- screw conveyor inlet- screw conveyor information- screw conveyor output-sectional flights-continuous helix-short pitch

Some of the typical configurations are:

1. Short pitch or continuous flight:

If the conveyor is required to handle dry granular or powdered materials that do not pack, this style of flight may be selected. It is of regular construction and recommended for inclined conveyors having a slope of 20 or more, including vertical conveyors. This style is extensively used as feeder screw.

2. Ribbon flight:

If the conveyor is to handle lumpy, clinging, sticky, gummy or viscous substances, this type flight may be selected. It consists of continuous helical flight formed from steel bar and secured to the pipe by supporting lugs.

01-screw conveyor part- screw conveyor pitch- screw conveyor power- screw conveyor length- screw conveyor layout- screw conveyor lift- screw conveyor loading-ribbon flight-cut flight

3. Cut flight:

In this type of flight screws have notches cut in the periphery of the flight. These notches supplement the conveying with moderate mixing action. They are recommended for conveyors required to handle light, fine, granular or flaky materials.

01-screw conveyor length- screw conveyor layout- screw conveyor lift- screw conveyor loading-cut flight-screw flight-sectional flight

4. Cut and folded flights:

This type of flight is characterized by notches as in cut flight, together with folded segments. This type of flight creates agitation and aeration resulting in better mixing. This type of flight is used to handle light or medium weight materials having fine, granular or flaky materials.

5. Some screw conveyors have cut flight with paddles mounted at regular intervals. The paddles counteract the flow of material past the flight resulting in greater agitation and mixing.

6. Sometimes screws are made of stainless steel to suit special requirements, like the sanitation requirements for handling food, drugs and other hygienic materials.

Vertical screw conveyors

September 8, 2011

01-Vertical screw conveyors- Vertical screw pump- Vertical screw conveyor design- Vertical screw conveyor calculations

A vertical screw conveyor conveys material upward in a vertical path. It requires less space than some other types of elevating conveyors. Vertical screw conveyor can handle most of the bulk materials provided there is no large lump. The maximum height is usually limited to 30m.

A vertical screw conveyor consists of a screw rotating in a vertical casing. The top bearing for the screw shaft must be designed to stand against radial and thrust loads. A suitable inlet port at the lower end and a discharge port at the upper end of the casing are provided. Feeding a vertical screw conveyor deserves careful consideration. Most materials are fed to the vertical conveyor by a straight or offset horizontal feeder conveyor. The ideal operation of a vertical screw conveyor is to have a controlled and uniform volume of material feeding.

Uneven feeding and start stop operation may adversely affect the performance of the vertical screw conveyor in terms of speed, capacity and horse power.

Average capacities and speeds of vertical conveyor

Nominal diameter of screw in mm Capacities in m3/hr Speed of screw
150 10 Up to 400 RPM
250 35 300 RPM
300 75 250 RPM
400 170 200 RPM

Vertical screw conveyors or some special design of vertical screw conveyor finds wide application in ship unloading.

01-Vertical screw lift- Vertical screw elevator- Vertical screw feeder- vertical screw conveyor-vertical screw pump

Practical experience with these conveyors has shown that the resistance factor for vertical conveyors is higher than those of the horizontal conveyors. Resistance factor λ may be taken as 5.5 to 7.5 for grains. 6.5 to 8.3 for salt.

01-screw conveyor design calculation- screw conveyor power calculation- screw conveyor efficiency- screw conveyor theory- screw conveyor formulae- screw conveyor flow rates

The driving power of the loaded screw conveyor is given by:

P = PH + PN + Pst


PH = Power necessary for the progress of the material

PN = Driving power of the screw conveyor at no load

Pst = Power requirement for the inclination of the conveyor

Power necessary for the progress of the material PH:

For a length L of the screw conveyor (feeder), the power PH in kilo watts is the product of the mass flow rate of the material by the length L and an artificial friction coefficient λ, also called the progress resistance coefficient.

PH = Im.L. λ.g / 3600 (kilowatt)

= Im.L. λ / 367 (kilowatt)


Im = Mass flow rate in t/hr

λ = Progress resistance coefficient

Each material has its own coefficient λ. It is generally of the order of 2 to 4. For materials like rock salt etc, the mean value of λ is 2.5. For gypsum, lumpy or dry fine clay, foundry sand, cement, ash, lime, large grain ordinary sand, the mean value of λ is 4.0.

In this connection it should be noted that the sliding of the material particles against each other gives rise to internal friction. Other resistance due to grading or shape of the output discharge pattern contributes to the resistance factor. That is why the parameter λ is always higher than that due to pure friction.

Drive power of the screw conveyor at no load, PN:

This power requirement is very low and is proportional to the nominal diameter and length of the screw.

PN = D.L / 20 (Kilowatt)


D = Nominal diameter of screw in meter

L = Length of screw conveyor in meter

Power due to inclination: Pst

This power requirement will be the product of the mass flow rate by the height H and the acceleration due to gravity g.

Pst = Im.H.g / 3600

= Im.H / 367

H should be taken positive for ascending screws and will be negative for descending screws.

Total power requirement:

The total power requirement is the sum total of the above items

P = (Im (λ.L + H) / 367) + (D.L /20) (Kilowatt)


August 23, 2011


01-standard pulley-spun end curve crown pulley-steel pulley-straight faced pulley-pulley mechanism-pulley ratio-pulley size-pulley selection

The diameters of standard pulleys are: 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1400 and 1600 mm. pulley may be straight faced or crowned. The crown serves to keep the belt centered. The height of the crown is usually 0.5% of the pulley width, but not less than 4 mm. The pulley diameter Dp depends on the number of plies of belt and may be also be determined from the formula:

Dp > K.i (mm)


K = a factor depending on the number of plies (125 to 150)

i = no of plies

The compound value should be rounded off to the nearest standard size. While selecting the pulley diameter it should be ascertained that the diameter selected is larger than the minimum diameter of pulley for the particular belt selected.

The drive pulley may be lagged by rubber coating whenever necessary, to increase the coefficient of friction. The lagging thickness shall vary between 6 to 12 mm. The hardness of rubber lagging of the pulley shall be less than that of the cover rubber of the running belt.

Pulley types:

Pulleys are manufactured in a wide range of sizes, consisting of a continuous rim and two end discs fitted with hubs. In most of the conveyor pulleys intermediate stiffening discs are welded inside the rim. Other pulleys are self cleaning wing types which are used as the tail, take-up, or snub pulley where material tends to build up on the pulley face. Magnetic types of pulleys are used to remove tramp iron from the material being conveyed.

Typical welded steel pulley-Drum conveyor pulley

01-typical welded steel pulley-pulley types-pulley design-pulley system-pulley problems-pulley size

Spun end curve crown pulley

01-conveyor pulleys-spun end crown pulley-self cleaning wing pulley-snub pulley-pulley face-magenetic pulley

Spiral drum conveyor pulley

01-spiral drum conveyor pulley-pulley types-pulley with ball bearings-pulley for handling bulk load

Welded steel pulley with diamond grooved lagging

01-types of pulley-welded steel pulley-grooved lagging-belt conveyor drive-belt conveyor resistance-belt wrapping over pulleys

Welded steel pulley with grooved Lagging

01-welded steel pulley with grooved lagging-pulley types-belt conveyor speed reduction mechanism-belt conveyor drive arrangement

Spiral Wing Conveyor pulley

01-spiral wing conveyor pulley-belt conveyor calculation-belt conveyor formula-belt conveyor gallery


Power calculation for the drive unit:

The horse power required at the drive of a belt conveyor is derived from the following formula:

H.P = Te . V


Te is the effective tension in the belt in N

V = velocity of the belt in m/s

The required effective tension Te on the driving pulley of a belt conveyor is obtained by adding up all the resistances.