Posted tagged ‘kilowatt’

AUTOMOBILE ENGINES

September 10, 2011

The working of an automobile engine follows the same principle as an internal combustion engine. Air, from outside, enters the engine through the air cleaner and reaches the throttle plate.
The pedal in your car is the control for the amount of air that you would want to be taken in, and you control it by pressing on this gas pedal.
The air is then distributed through the intake manifold of the cylinders.

At some point fuel is injected into the air stream, and the mixture vaporizes and is drawn into the cylinders as they start their intake stroke.

This way, when the cylinder has reached its bottom, it has drawn in sufficient mixture. As it moves up, compressing the mixture, the spark plug ignites the mixture, and as the powerful gas formed expands, it pushes the cylinder to the bottom with the cylinder once again drawing in the mixture.

In designing automobile engines, you need to be a specialist in automobile engineering.
The consideration that is taken while designing such an engine is whether it should be a carburetor or a diesel one. carburetor engines are most commonly found in passenger cars and low capacity trucks, while trucks with a capacity over two tons are fitted with diesel engines, including dump trucks, trailer tractors and bus.

Increasingly the medium and low-capacity vehicles are being fitted with diesel engines, since the fuel consumption of these engines are 30% to 50% lower than the carburetor engines.
Diesel engines not only cost more, but maintenance is much more expensive than the other type of engine. Diesels require more metal parts per kilowatt.
The critical parts of diesel engines are made of alloy steel, and the fuel injection system is much more expensive than carburetor engines.

However, the cost of manufacturing carburetor engines has increased with the use of higher mechanical grade components, considering the thermal loads of the material used. At the same time the use of high alloys and increase in production costs have contributed to the higher price of such engines.

There is a sharp rise in using aluminum alloys in design of carburetor engines in passenger cars, and with the use of high octane petrol, the cost of operation of these cars have come down extensively. Using alloy steel in constructing the engine body and other parts of the engine, makes the car lighter and hence fuel consumption goes down substantially.

The main parts that are made of high steel alloy are the main casting of the engine, the cylinder head, water and oil pumps, oil filter housing, end covers of the generator and starter, and the intake pipes. It has been observed that by using high steel alloys, the weight of the car is reduced by 35%.

The power per liter, per unit of piston area, and the brake effective pressure are 6% to 8% lower in air-cooled engines, compared to engines having liquid cooling mechanism. This is due to the fact that in engines with liquid cooling there are great losses in cylinder charging caused by the high temperature in pipes, ducts in the head, cylinder walls and head, etc.

The size of air cooled engines are much bigger than the engines with liquid cooling having the same capacity, and this is because the cylinder axes difference is larger in air-cooled engines. Taking account of the radiator dimensions, if both engines are compared, the air-cooled engine will vary slightly with its height a little longer than or approximately the same length as the water-cooled engine. As far as the width and the height is concerned both engines are about the same.

The auxiliary units of the feed and ignition, and generator and starter systems are a bit difficult to fit on the body of the air-cooled engines, because of the presence of hoods and having a danger of over-heating.

PRODUCE ELECTRICITY FROM SOLAR HEAT

August 22, 2011

01-solar thermal power conversion-beam radiation-direct normal irradiation-Solar-Power-in-Florida-turning solar heat into electricity

The principles of solar thermal power conversion have been known for more than a century; its commercial scale-up and exploitation, however, has only taken place since the mid 1980s. With these first large-scale 30-80 MW parabolic trough power stations, built in the California Mojave desert, the technology has impressively demonstrated its technological and economic promise. With few adverse environmental impacts and a massive resource, the sun, it offers an opportunity to the countries in the sun belt of the world comparable to that currently being offered by offshore wind farms to European and other nations with the windiest shorelines.

01-direct radiation-solar radiation-electromagnetic radiation-solar collectors-insolation

Solar thermal power can only use direct sunlight, called ‘beam radiation’ or Direct Normal Irradiation (DNI), i.e. that fraction of sunlight which is not deviated by clouds, fumes or dust in the atmosphere and that reaches the earth’s surface in parallel beams for concentration. Hence, it must be sited in regions with high direct solar radiation. Suitable sites should receive at least 2,000 kilowatt hours (kWh) of sunlight radiation per m2annually, whilst best site locations receive more than 2,800 kWh/m2/year.

01-solar panels-solar power energy-solar power system-diagram_solar_power-produce electricity from solar energy example

In many regions of the world, one square kilometer of land is enough to generate as much as 100-130 Giga watt hours (GWh) of solar electricity per year using solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal- or gas-fired mid-load power plants. Over the total life cycle of a solar thermal power system, its output would be equivalent to the energy contained in more than    5 million barrels of oil2).

TURNING SOLAR HEAT INTO ELECTRICITY

01-illustration_trough_collector_from_sunlight-solar collector assembly-parabolic trough solar collector

Producing electricity from the energy in the sun’s rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power (CSP) technologies to provide medium- to high temperature heat.


01-concentrating solar power plants-CSP Technologies-Concentrating solar power technologies-direct solar radiation process-parabolic solar trough collectors

This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation.