Posted tagged ‘level’

USE YOUR BOOZE AS YOUR FUTURE FUEL

September 10, 2011

biofuel-from-whiskyTill date, all types of alcoholic drinks, or booze as they are commonly called, are produced only with the intention of drinking for socializing, fun, recreation and to drown one’s sorrows.
However the researchers of Abertay’s School of Contemporary Science have found a different and more beneficial use for alcoholic drinks.

The researchers here have been awarded the prestigious Carnegie Trust Research Grant to help them in the investigation of turning the residues that are found in the production of beer and whisky, into a form of renewable biofuel.

This is anticipated to be a project that takes about a year to find new methods of turning the spent grain of these drinks into an efficient biofuel, bioethanol.

Bioethanol is a much more environmentally friendly alternative to the present fossil fuels you find around you.
The reason it is considered better to using bioethanol, instead of traditional fuels for your fueling purposes is that it is CO2 neutral. It is also produces 65% less greenhouse gas emissions because it burns at temperatures that are at a much better level for fire safety.

With the supply of fuel being predicted to be finite, with half of the world’s oil supply already having been consumed in the passed 200 years, scientists are looking for simple and cost effective means of producing more biofuels from low value and waste products. there is a race going on for finding environmentally friendly alternatives to fuels for the future of the world, and this is why spent grains of alcohol and beer manufacture are considered to be a safe and efficient option for this.

Today Brazil and USA together produce over 70% of global supplies through the creation of bioethanol from sugarcane and maize starch respectively.
Though the US has beaten Brazil in its production, Brazil is still the largest exporter that sends about 3.2 billion liters of bioethanol in the last year alone.

Like all things in life, there are some negative aspects to this method of generating fuels. Both these countries tend to create an increased demand for land to grow the energy crops they require for generating bioethanol. In fact, in countries like Brazil, the safety of tropical forests too is threatened where even the benefits of using biofuel too may be cancelled out.

This is why researchers are considering using the waste products received from the manufacture of alcohol for creating biofuels. This may be a more complicated process of turning waste products into bioethanol. However it is a perfect example of a second generation biofuel.

The products used for the creation of this biofuel is usually disposed of or at the most, used for processing animal feed.

Instead of this, using them to produce fuel would be an attractive means of using this resource. However presently, there are many technical challenges and hindrances that have to be overcome to help in converting waste biomass into fuel.

And the search is still on for a more efficient and cost effective process for producing biofuels from alcoholic wastes.

FMEA

August 23, 2011

01-Aircraft-Maintenance-manufacturing-aviation-failure mode and effect analysis-fmea

Failure Mode – A particular way in which an item fails, independent of the reason for failure.

 Failure Mode and Effects Analysis (FMEA) – A procedure by which each credible failure mode of each item from a low indenture level to the highest is analyzed to determine the effects on the system and to classify each potential failure mode in accordance with the severity of its effect.

Indenture Levels – The hierarchy of hardware levels from the part to the component to the subsystem to the system, etc.

Redundancy – More than one independent means of performing a function.  There are different kinds of redundancy, including:
(1) Operational – Redundant items, all of which are energized during the operating cycle; includes load-sharing, wherein redundant items are connected in a manner such that upon failure of one item, the other will continue to perform the function.  It is not necessary to switch out the failed item or switch in the redundant one.

            (2) Standby – Items that are inoperative (have no power applied) until they are switched in upon failure of the primary item.

            (3) Like Redundancy – Identical items performing the same function.

            (4) Unlike Redundancy – Non identical items performing the same function

THE FMEA PROCESS

01-web- failure analysis-unexpected failure-operational fracture-failure rate

  • Define the system to be analyzed.  A complete system definition includes identification of internal and interface functions, expected performance at all indenture levels, system restraints, and failure definitions.  Also state systems and mission phases not analyzed giving rationale for the omissions.

  • Indicate the depth of the analysis by identifying the indenture level at which the analysis is begun.

  • Identify specific design requirements that are to be verified by the FMEA.

  • Define ground rules and assumptions on which the analysis is based.  Identify mission phases to be analyzed and the status of equipment during each mission phase.

  • Obtain or construct functional and reliability block diagrams indicating interrelationships of functional groups, system operation, independent data channels, and backup or workaround features of the system.

  • Identify failure modes, effects, failure detection and workaround features and other pertinent information on the worksheet.

  • Evaluate the severity of each failure effect in accordance with the prescribed severity categories.

FMEA Flow Diagram:

01-FMEA FLOW DIAGRAM-STEPS-PREVENTIVE ACTION-CORRECTIVE ACTION

History:

The FMECA was originally developed by the National Aeronautics and Space Administration (NASA) to improve and verify the reliability of space program hardware.

FMECA Flow Diagram: ( Failure Mode, Effects and Criticality Analysis )

01-FMECA Flow Diagram- Failure Mode Effects and Criticality Analysis

Criticality Analysis Flow:

01-quantitative method-qualitative method-analysis-criticality analysis flow diagram

Who is the Team ?

 

Areas to be represented are:

  • Quality
  • Logistics
  • Engineering
  • Purchasing
  • Manufacturing
  • Sales
  • Tooling
  • Marketing
  • Customer
  • Supplier

JIB CRANE

August 23, 2011

Jib crane have the following motions:

    1. Hoisting motion
    2. Derricking or luffing motion
    3. Slewing motion
    4. Long travel motion

Hoisting motion:

It is used to lift or lower the load. This is usually achieved by steel wire ropes being affixed to a crane hook or a grab hanging from the outer end of the jib. The rope is applied through some receiving arrangement and controlled and operated by a winch system.

01-crane hoist-tower crane-electric hoist-jib crane motion-to lift or lower the load-steel wire ropes

Derricking or Luffing motion:

It is imparted to the inclined member or the jib to move in a vertical plane so that the angle of the jib may be changed in order to bring the load line nearer to or further off from the centre of the crane.

01-derricking motion-luffing motion-of jib cranes-jib move in vertical plane

Slewing motion:

It is imparted to the whole super structure of the crane including the jib, so that it can turn about a central pivot shaft w.r.t. the non-revolving parts. This motion enables the crane to shift the load line to revolve round the crane.

01-wall mounted jib crane-for handling light weight materials-slewing motion

Long Travel Motion:

It may be required when the whole crane structure has to be shifted to a distant place along a rail track or along a road.

01-crawler mounted mobile jib cranes-travelling type jib cranes-power driven cranes-long travel motion

Jib crane consists of an inclined member supported by a rope or any other type of structural member attached to a vertical mast or frame. Load is usually suspended from the outer end of this inclined mast. The outreach of the jib may be fixed or variable. The cranes as a whole may be either fixed or moveable. Various sub-classification of these cranes are possible.

Lifting capacity of such cranes may vary from 1/2 ton to 200 ton and outreach from a few meter to 50 meter. Such cranes find various applications in port area, construction site, and other outdoor works.

For handling general cargo, lifting capacities are usually 1  1/2 ton to  5 ton with maximum outreach of 30 meter. Jib Cranes provided with grabbing facilities have usually a capacity ranging from 3 to 20 tons operating 50 to 100 cycles per hour. Lifting heights may be 30 meters or more.

Jib crane used in ship yards for lifting heavy machinery and equipment, weighing 100 to 300 tons, are usually mounted on pontoons. Frequently these cranes are provided with two main hoisting winches which can be employed singly or together to lift a load. For handling light loads these cranes may have auxiliary arrangement.

Types Of Jib Crane:

Depending on the use, jib cranes are classified into a number of varieties, primarily on the basis of their mountings.

These are:

    1. Hand Operated Scotch Derrick Type
    2. Wall Mounted Jib crane
    3. Portal / Semi-portal cranes of different varieties-Wharf cranes
    4. Mobile jib cranes consisting of truck mounted and crawler mounted cranes

Scotch Derrick Type / Wall Cranes:

01-wall mounted jib crane-for handling light weight materials

Wall cranes are used in ware houses for handling light weight and when there is little or no wharf between them and the water front. Slewing or rotational motion of the crane is possible within restricted angle and the motion is slow. Hoisting and lifting speeds are comparable to those of wharf cranes. In some modified version these cranes can have travelling speed along the wall.

01-scotch derrick cranes-hand operated jib crane

Wharf Cranes:

These are used in shipyard and port for handling unit and bulk load. These are usually self propelled balanced level luffing type with full circle slewing motion facility. Wharf cranes may be of different types, depending on the type of structure on which it is mounted.  The choice of structure for mounting depends on site condition.

01-wharf cranes-semi portal cranes-full portal cranes-jib cranes-girders connected at both the ends

The principal types of wharf cranes are:

  • High pedestal
  • Full Portal
  • Semi-portal

Portal Cranes:

Portal crane is a fixed or revolving type jib crane mounted on a portal frame fixed in location or arranged to travel along a fixed track of rails at the same level. The portal frame consists essentially of horizontal girders connected at both ends to vertical or inclined member’s having equal lengths.

Semi portal Crane:

Semi portal crane is a fixed or revolving type jib crane mounted on a semi portal frame fixed in location or arranged to travel along a fixed track or rails at different levels. The semi portal frame essentially consists of horizontal girders connected at both ends to vertical or inclined members which constitute a shorter side and a longer side. The shorter members may consist only of the trolley running along the elevated rail.

01-semi portal cranes-full portal cranes-wharf crane-types of jib crane

Mobile crane:

Mobile Crane ( Power Driven ) includes all type of travelling jib cranes, such as truck mounted, crawler mounted, locomotive crane on rails.

01-crawler mounted mobile jib cranes-travelling type jib cranes-power driven cranes

 

01-mobile cranes-travelling jib cranes-Truck mounted jib crane

MEASUREMENT

August 23, 2011

Calibration:

01-the weighing scale-weighing machines-balance-calibration example

If a known input is given to the measurement system the output deviates from the given input, the corrections are made in the instrument and then the output is measured. This process is called “Calibration”.

Sensitivity:

Sensitivity is the ratio of change in the output signal to the change in the input signal.

Readability:

01-electroniccaliper-VERNIER CALIPER-DIGITAL VERNIER CALIPER-DIRECT MEASUREMENTS-ACCURATE-PRECISION MEASUREMENTS-CALIBRATED INSTRUMENTS-readability

Refers to the ease with which the readings of a measuring instrument can be read.

True size:

Theoretical size of a dimension which is free from errors.

Actual size:

Size obtained through measurement with permissible error.


01-true size-actual size-feet size-example-shoe-footwear

Hysteresis:

All the energy put into the stressed component when loaded is not recovered upon unloading. so the output of measurement partially depends on input called Hysteresis.

01-tachometer-digital tachometer-hysteresis due to pressure of force

Range:

The physical variables that are measured between two values. One is the higher calibration value Hc and the other is Lower value Lc.

01-range - read values from 0 to 11000 rpm - bezel meter - tachometer

Span:

The algebraic difference between higher calibration values to lower calibration values.

Resolution:

The minimum value of the input signal is required to cause an appreciable change in the output known as resolution.

Dead Zone:

It is the largest change in the physical variable to which the measuring instrument does not respond.

Threshold:

The minimum value of input signal that is required to make a change or start from zero.

01-threshold-minimum input given to start the engine-bike kick start action

Backlash:

The maximum distance through which one part of the instrument is moved without disturbing the other part.

01-backlash - continuous rotation possible without applying brake-SINGLE 3-PHASE AC ASYNCHRONOUS ELECTRIC MOTOR

Response Time:

The time at which the instrument begins its response for a change in the measured quantity.

Repeatability:

The ability of the measuring instrument to repeat the same results during the act measurements for the same quantity is known as repeatability.

Bias:

It is a characteristic of a measure or measuring instruments to give indications of the value of a measured quantity for which the average value differs from true value.

Magnification:

It means the magnitude of output signal of measuring instrument many times increases to make it more readable.

01-magnification-objective lens-magnify-loupe-ring

Drift:

If an instrument does not reproduce the same reading at different times of measurement for the same input signal, it is said to be measurement drift.

Reproducibility:

It is the consistency of pattern of variation in measurement. When individual measurements are carried out the closeness of the agreement between the results of measurements of the same quantity.

Uncertainty:

The range about the measured value within the true value of the measured quantity is likely to lie at the stated level of confidence.

Traceability:

It is nothing establishing a calibration by step by step comparison with better standards.

01-traceability-calibration step by step-vacuum calibration

Parallax:

An apparent change in the position of the index relative is to the scale marks.

 

 

01-parallax-error-measurement of length-eye view