Posted tagged ‘meter’

Vertical screw conveyors

September 8, 2011


01-Vertical screw conveyors- Vertical screw pump- Vertical screw conveyor design- Vertical screw conveyor calculations

A vertical screw conveyor conveys material upward in a vertical path. It requires less space than some other types of elevating conveyors. Vertical screw conveyor can handle most of the bulk materials provided there is no large lump. The maximum height is usually limited to 30m.

A vertical screw conveyor consists of a screw rotating in a vertical casing. The top bearing for the screw shaft must be designed to stand against radial and thrust loads. A suitable inlet port at the lower end and a discharge port at the upper end of the casing are provided. Feeding a vertical screw conveyor deserves careful consideration. Most materials are fed to the vertical conveyor by a straight or offset horizontal feeder conveyor. The ideal operation of a vertical screw conveyor is to have a controlled and uniform volume of material feeding.

Uneven feeding and start stop operation may adversely affect the performance of the vertical screw conveyor in terms of speed, capacity and horse power.

Average capacities and speeds of vertical conveyor

Nominal diameter of screw in mm Capacities in m3/hr Speed of screw
150 10 Up to 400 RPM
250 35 300 RPM
300 75 250 RPM
400 170 200 RPM

Vertical screw conveyors or some special design of vertical screw conveyor finds wide application in ship unloading.

01-Vertical screw lift- Vertical screw elevator- Vertical screw feeder- vertical screw conveyor-vertical screw pump

Practical experience with these conveyors has shown that the resistance factor for vertical conveyors is higher than those of the horizontal conveyors. Resistance factor λ may be taken as 5.5 to 7.5 for grains. 6.5 to 8.3 for salt.

01-screw conveyor design calculation- screw conveyor power calculation- screw conveyor efficiency- screw conveyor theory- screw conveyor formulae- screw conveyor flow rates

The driving power of the loaded screw conveyor is given by:

P = PH + PN + Pst

Where,

PH = Power necessary for the progress of the material

PN = Driving power of the screw conveyor at no load

Pst = Power requirement for the inclination of the conveyor

Power necessary for the progress of the material PH:

For a length L of the screw conveyor (feeder), the power PH in kilo watts is the product of the mass flow rate of the material by the length L and an artificial friction coefficient λ, also called the progress resistance coefficient.

PH = Im.L. λ.g / 3600 (kilowatt)

= Im.L. λ / 367 (kilowatt)

Where,

Im = Mass flow rate in t/hr

λ = Progress resistance coefficient

Each material has its own coefficient λ. It is generally of the order of 2 to 4. For materials like rock salt etc, the mean value of λ is 2.5. For gypsum, lumpy or dry fine clay, foundry sand, cement, ash, lime, large grain ordinary sand, the mean value of λ is 4.0.

In this connection it should be noted that the sliding of the material particles against each other gives rise to internal friction. Other resistance due to grading or shape of the output discharge pattern contributes to the resistance factor. That is why the parameter λ is always higher than that due to pure friction.

Drive power of the screw conveyor at no load, PN:

This power requirement is very low and is proportional to the nominal diameter and length of the screw.

PN = D.L / 20 (Kilowatt)

Where,

D = Nominal diameter of screw in meter

L = Length of screw conveyor in meter

Power due to inclination: Pst

This power requirement will be the product of the mass flow rate by the height H and the acceleration due to gravity g.

Pst = Im.H.g / 3600

= Im.H / 367

H should be taken positive for ascending screws and will be negative for descending screws.

Total power requirement:

The total power requirement is the sum total of the above items

P = (Im (λ.L + H) / 367) + (D.L /20) (Kilowatt)

JIB CRANE

August 23, 2011

Jib crane have the following motions:

    1. Hoisting motion
    2. Derricking or luffing motion
    3. Slewing motion
    4. Long travel motion

Hoisting motion:

It is used to lift or lower the load. This is usually achieved by steel wire ropes being affixed to a crane hook or a grab hanging from the outer end of the jib. The rope is applied through some receiving arrangement and controlled and operated by a winch system.

01-crane hoist-tower crane-electric hoist-jib crane motion-to lift or lower the load-steel wire ropes

Derricking or Luffing motion:

It is imparted to the inclined member or the jib to move in a vertical plane so that the angle of the jib may be changed in order to bring the load line nearer to or further off from the centre of the crane.

01-derricking motion-luffing motion-of jib cranes-jib move in vertical plane

Slewing motion:

It is imparted to the whole super structure of the crane including the jib, so that it can turn about a central pivot shaft w.r.t. the non-revolving parts. This motion enables the crane to shift the load line to revolve round the crane.

01-wall mounted jib crane-for handling light weight materials-slewing motion

Long Travel Motion:

It may be required when the whole crane structure has to be shifted to a distant place along a rail track or along a road.

01-crawler mounted mobile jib cranes-travelling type jib cranes-power driven cranes-long travel motion

Jib crane consists of an inclined member supported by a rope or any other type of structural member attached to a vertical mast or frame. Load is usually suspended from the outer end of this inclined mast. The outreach of the jib may be fixed or variable. The cranes as a whole may be either fixed or moveable. Various sub-classification of these cranes are possible.

Lifting capacity of such cranes may vary from 1/2 ton to 200 ton and outreach from a few meter to 50 meter. Such cranes find various applications in port area, construction site, and other outdoor works.

For handling general cargo, lifting capacities are usually 1  1/2 ton to  5 ton with maximum outreach of 30 meter. Jib Cranes provided with grabbing facilities have usually a capacity ranging from 3 to 20 tons operating 50 to 100 cycles per hour. Lifting heights may be 30 meters or more.

Jib crane used in ship yards for lifting heavy machinery and equipment, weighing 100 to 300 tons, are usually mounted on pontoons. Frequently these cranes are provided with two main hoisting winches which can be employed singly or together to lift a load. For handling light loads these cranes may have auxiliary arrangement.

Types Of Jib Crane:

Depending on the use, jib cranes are classified into a number of varieties, primarily on the basis of their mountings.

These are:

    1. Hand Operated Scotch Derrick Type
    2. Wall Mounted Jib crane
    3. Portal / Semi-portal cranes of different varieties-Wharf cranes
    4. Mobile jib cranes consisting of truck mounted and crawler mounted cranes

Scotch Derrick Type / Wall Cranes:

01-wall mounted jib crane-for handling light weight materials

Wall cranes are used in ware houses for handling light weight and when there is little or no wharf between them and the water front. Slewing or rotational motion of the crane is possible within restricted angle and the motion is slow. Hoisting and lifting speeds are comparable to those of wharf cranes. In some modified version these cranes can have travelling speed along the wall.

01-scotch derrick cranes-hand operated jib crane

Wharf Cranes:

These are used in shipyard and port for handling unit and bulk load. These are usually self propelled balanced level luffing type with full circle slewing motion facility. Wharf cranes may be of different types, depending on the type of structure on which it is mounted.  The choice of structure for mounting depends on site condition.

01-wharf cranes-semi portal cranes-full portal cranes-jib cranes-girders connected at both the ends

The principal types of wharf cranes are:

  • High pedestal
  • Full Portal
  • Semi-portal

Portal Cranes:

Portal crane is a fixed or revolving type jib crane mounted on a portal frame fixed in location or arranged to travel along a fixed track of rails at the same level. The portal frame consists essentially of horizontal girders connected at both ends to vertical or inclined member’s having equal lengths.

Semi portal Crane:

Semi portal crane is a fixed or revolving type jib crane mounted on a semi portal frame fixed in location or arranged to travel along a fixed track or rails at different levels. The semi portal frame essentially consists of horizontal girders connected at both ends to vertical or inclined members which constitute a shorter side and a longer side. The shorter members may consist only of the trolley running along the elevated rail.

01-semi portal cranes-full portal cranes-wharf crane-types of jib crane

Mobile crane:

Mobile Crane ( Power Driven ) includes all type of travelling jib cranes, such as truck mounted, crawler mounted, locomotive crane on rails.

01-crawler mounted mobile jib cranes-travelling type jib cranes-power driven cranes

 

01-mobile cranes-travelling jib cranes-Truck mounted jib crane

MECHANICAL TESTING

August 23, 2011

Various tests:

  • Tensile Test

A tensile test, also known as a tension test, tests a material’s strength. It’s a mechanical test where a pulling force is applied to a material from both sides until the sample changes its shape or breaks. It’s is a common and important test that provides a variety of information about the material being tested, including the elongation, yield point, tensile strength, and ultimate strength of the material. Tensile tests are commonly performed on substances such as metals, plastics, wood, and ceramics.

01-Electronic_Tensile_Testing_Machine-calculate tensile strength-yield strength-ultimate strength-break value-elongation-testing steels, iron, plastics and composite materials

Tensile testing systems use a number of different units of measurement. The International System of Units, or SI, recommends the use of either Pascals (Pa) or Newtons per square meter (N/m²) for describing tensile strength. In the United States, many engineers measure tensile strength in kilo-pound per square inch (KSI).

01-TensileStrength-tensile test-Calculate Ultimate tensile strength-tensile property testing of plastics, steel, iron-material strength calculate - pascals - newton per square meter

  • Tensile test with electronic extensometer

01-electronic_extensometer-calculate proof stress - youngs modulus values-material stress-acccepts load-extension value

This instrument is to be used on Tensile or Universal testing machines to find out Proof stress & Young’s modulus values. In case of many brittle materials such as high carbon steels, alloy steels, light aluminium & magnesium alloys, it is difficult to get yield values. For such materials stress corresponding to a certain allowable amount of plastic deformation is termed as proof stress say 0.1% or 0.2% proof stress. The measuring range is up to 5mm & resolution is 0.001mm.

01-mechanical_extensometer-tensile test calculation-universal testing machine-utm

  • Tensile testing at elevated temperature.

01-tensile test at elevated temperature-high temperature tensile test-specialist tensile test

High temperature tensile testing is a procedure to test the properties of a material at above room temperature. It will determine the following parameters:

  • Tensile strength (breaking strength)
  • Yield strength
  • Elongation
  • Reduction of area

Specialist testing, measurement and control equipment is required to perform this test.
The results of such a test will provide a good indication of the static load bearing capacity of the material and therefore establishes the suitability of a material for its intended purpose.

  • Tensile test on Tor steel Bars

01-tor-steel-bar-rods-TMT steel Bars-concrete technology-durable-corrosion resistant-engineering and construction

TOR steel is one of the best grade of steel used in concrete reinforced. It’s a kind of high adherence steel. Other types of steel are used for less resistance concrete. Thermo mechanically Treated (TMT) bars are a type of corrosion resistant steel reinforcing bar used in concrete construction.

  • Bend test on plates

01-bend test on steels- cold bars -cold bend testing for steels

A bend test is used to determine whether a specific piece of metal in question will break or fracture under pressure. This is important in the construction of any project using metal, otherwise the building or the item being made could collapse from the immense pressure exerted on it. Every piece of metal made cannot be tested, therefore certain pieces are tested and if they pass, the other pieces are made using the same process. The results of a bend test are reported differently depending on the type of material tested. There is no standard method for reporting the durability that applies to all materials, rather each group has its own set by which it is judged and compared to other metals in that group.

The bend test is essentially measuring a metal’s ductility. Ductility defines how easily a metal can bend without breaking. The higher the ductility of a metal, the more it can bend without breaking or becoming deformed from its original shape. This is important because certain metals must handle pressure without snapping yet still be ductile enough to bend slightly and not lose their support or shape. Copper and steel are two metals that have a high ductility and do well under pressure.

  • Bend test on pipes

01-bend test on pipes

Bending tests are carried out to ensure that a metal has sufficient ductility to stand bending without fracturing. A standard specimen is bent through a specified arc and in the case of strip, the direction of grain flow is noted and whether the bend is with or across the grain.

  • Bend Test on Tor steel

01-wire-rods-rebend test on steels

The purpose is to make certain the weld and the base metal are properly fused, and that the weld metal and the heat affected zone (HAZ) have appropriate mechanical properties

  • Re-Bend test on Tor steel

01-wire-rods-rebend test on steels

The purpose of re-bend test is to measure the effect of strain ageing on steel. Strain ageing has embrittlement effect which takes place after cold deformation by diffusion of nitrogen in steel. Hence, there is limitation stated in some design codes to restrict the nitrogen content of steel to 0.012%.

  • Nick Break Test

01-nick break test-welding-fabrication-on sheets

The NICK-BREAK TEST is useful for determining the internal quality of the weld metal. This test reveals various internal defects (if present), such as slag inclusions,  gas  pockets,  lack of  fusion,  and  oxidized  or burned metal. To accomplish the nick-break test for checking a butt weld, you must first flame-cut the test specimens from a sample weld.

MECHANICAL TESTING

August 23, 2011

Various tests:

  • Tensile Test

A tensile test, also known as a tension test, tests a material’s strength. It’s a mechanical test where a pulling force is applied to a material from both sides until the sample changes its shape or breaks. It’s is a common and important test that provides a variety of information about the material being tested, including the elongation, yield point, tensile strength, and ultimate strength of the material. Tensile tests are commonly performed on substances such as metals, plastics, wood, and ceramics.

01-Electronic_Tensile_Testing_Machine-calculate tensile strength-yield strength-ultimate strength-break value-elongation-testing steels, iron, plastics and composite materials

Tensile testing systems use a number of different units of measurement. The International System of Units, or SI, recommends the use of either Pascals (Pa) or Newtons per square meter (N/m²) for describing tensile strength. In the United States, many engineers measure tensile strength in kilo-pound per square inch (KSI).

01-TensileStrength-tensile test-Calculate Ultimate tensile strength-tensile property testing of plastics, steel, iron-material strength calculate - pascals - newton per square meter

  • Tensile test with electronic extensometer

01-electronic_extensometer-calculate proof stress - youngs modulus values-material stress-acccepts load-extension value

This instrument is to be used on Tensile or Universal testing machines to find out Proof stress & Young’s modulus values. In case of many brittle materials such as high carbon steels, alloy steels, light aluminium & magnesium alloys, it is difficult to get yield values. For such materials stress corresponding to a certain allowable amount of plastic deformation is termed as proof stress say 0.1% or 0.2% proof stress. The measuring range is up to 5mm & resolution is 0.001mm.

01-mechanical_extensometer-tensile test calculation-universal testing machine-utm

  • Tensile testing at elevated temperature.

01-tensile test at elevated temperature-high temperature tensile test-specialist tensile test

High temperature tensile testing is a procedure to test the properties of a material at above room temperature. It will determine the following parameters:

  • Tensile strength (breaking strength)
  • Yield strength
  • Elongation
  • Reduction of area

Specialist testing, measurement and control equipment is required to perform this test.
The results of such a test will provide a good indication of the static load bearing capacity of the material and therefore establishes the suitability of a material for its intended purpose.

  • Tensile test on Tor steel Bars

01-tor-steel-bar-rods-TMT steel Bars-concrete technology-durable-corrosion resistant-engineering and construction

TOR steel is one of the best grade of steel used in concrete reinforced. It’s a kind of high adherence steel. Other types of steel are used for less resistance concrete. Thermo mechanically Treated (TMT) bars are a type of corrosion resistant steel reinforcing bar used in concrete construction.

  • Bend test on plates

01-bend test on steels- cold bars -cold bend testing for steels

A bend test is used to determine whether a specific piece of metal in question will break or fracture under pressure. This is important in the construction of any project using metal, otherwise the building or the item being made could collapse from the immense pressure exerted on it. Every piece of metal made cannot be tested, therefore certain pieces are tested and if they pass, the other pieces are made using the same process. The results of a bend test are reported differently depending on the type of material tested. There is no standard method for reporting the durability that applies to all materials, rather each group has its own set by which it is judged and compared to other metals in that group.

The bend test is essentially measuring a metal’s ductility. Ductility defines how easily a metal can bend without breaking. The higher the ductility of a metal, the more it can bend without breaking or becoming deformed from its original shape. This is important because certain metals must handle pressure without snapping yet still be ductile enough to bend slightly and not lose their support or shape. Copper and steel are two metals that have a high ductility and do well under pressure.

  • Bend test on pipes

01-bend test on pipes

Bending tests are carried out to ensure that a metal has sufficient ductility to stand bending without fracturing. A standard specimen is bent through a specified arc and in the case of strip, the direction of grain flow is noted and whether the bend is with or across the grain.

  • Bend Test on Tor steel

01-wire-rods-rebend test on steels

The purpose is to make certain the weld and the base metal are properly fused, and that the weld metal and the heat affected zone (HAZ) have appropriate mechanical properties

  • Re-Bend test on Tor steel

01-wire-rods-rebend test on steels

The purpose of re-bend test is to measure the effect of strain ageing on steel. Strain ageing has embrittlement effect which takes place after cold deformation by diffusion of nitrogen in steel. Hence, there is limitation stated in some design codes to restrict the nitrogen content of steel to 0.012%.

  • Nick Break Test

01-nick break test-welding-fabrication-on sheets

The NICK-BREAK TEST is useful for determining the internal quality of the weld metal. This test reveals various internal defects (if present), such as slag inclusions,  gas  pockets,  lack of  fusion,  and  oxidized  or burned metal. To accomplish the nick-break test for checking a butt weld, you must first flame-cut the test specimens from a sample weld.