Posted tagged ‘micrometer’

Powder Metallurgy / Introduction / Process / Methods

September 16, 2011

Definition:

The Process of producing components from metallic powder parts made by powder metallurgy may contain non-metallic constituents to improve the bonding qualities and properties.

Number and variety of products made by powder metallurgy are continuously increasing:

  1. Tungsten Filaments for Lamps
  2. Contact Point relays
  3. Self lubricating bearings
  4. Cemented carbides for cutting tools etc.

02-PowderManufacturing-metallurgy-particles

 

Characters of Metal Powders:

  • Shape:

It is influenced by the way it’s made. The shape may be spherical (atomization) (Electrolysis) flat or angular (Mechanical crushing). The particle shape influences the flow characteristics of powders.

  • Particle Size (Fineness) and size distribution:

Particle Size and Distribution are important factors which controls the porosity, Compressibility and amount of shrinkage. Proper particle size and size distribution are determined by passing the powder through a standard sieves ranging from 45 to 150 micrometer mesh.

  • Flowability:

The ability of the powders to flow readily and conform to the mould cavity. The flow rate helps to determine to possible production rate.

  • Compressibility:

It’s defines as the volume of initial powder (Powder loosely filled in cavity) to the volume of compact part. Depends on particle shape & size distribution.

  • Apparent Density:

The Apparent density depends on particle size is defined as the ratio of volume to weight of loosely filled mixture.

  • Green strength:

It refer to strength of a compact part prior to sintering. It depends on compressibility and helps to handle the parts during the mass production.

  • Purity:

Impurities affects sintering & Compacting Oxides & Gaseous impurities can be removed from the part during sintering by the use of a reducing atmosphere.

  • Sintering ability:

It is the ability which promotes bonding of particles by the application of heat.

 

Powder Metallurgy Process steps:

 

01-powder-metallurgy-process-step by step

 

01-powder metallurgy processes-mixing-finished product

 

02-finished product 

Manufacture of Metal Powders:

Methods:

  • Mechanical pulverization:

Machining, Drilling or Grinding of metals is used to convert them to powders.

  • Machining:

It Produces coarse particles (Flack form) especially Magnesium powders.

  • Milling or Grinding:

It suitable for brittle materials.

  • Shorting:

The process of dropping molten metal through a Sieve or small orifice in to water. This produces Spherical particles or larger size. Commonly used for metals of low melting point.

03-mechanical pulverization-milling-powder

04-crushing-shredding-conveyors-powder

 

  • Atomizing:

In this molten metal is forced through a nozzle, and a stream of compressed air, stream or Inert gas is directed on it break up into five particles. Powders obtained in irregular in shapes. Atomization commonly used for aluminium, Zinc, Tin, Cadmium and other metals of low melting point.

03-atomization-powder metallurgy

 

  • Electrolytic deposition:

It’s used mainly for producing iron and copper powders. These are dense structure with low apparent density. It consists of depositing metal on cathode plate by conventional electrolysis processes. The Cathode paltes are removed and the deposited powder is scraped off. The powder is wasted, dried, screened & oversized particles are milled or ground for fineness. The powder is further subjected to heat treatment to remove the work hardening effect.

  • Chemical reduction:

It’s used for producing iron, Copper, Tungsten, Molybdenum, Nickel & Cobalt powder process consists of reducing the metal oxides by means of carbon monoxide or Hydrogen. After reduction, the powder is usually ground & Sized.

 

Forming to shape:

  1. The process of mixing the powders is called Blending.
  2. The Loose powders are formed in to shape by compacting.

METALLURGY

August 23, 2011

Definition:

The Process of producing components from metallic powder parts made by powder metallurgy may contain non-metallic constituents to improve the bonding qualities and properties.

Number and variety of products made by powder metallurgy are continuously increasing:

    1. Tungsten Filaments for Lamps
    2. Contact Point relays
    3. Self lubricating bearings
    4. Cemented carbides for cutting tools etc.

02-PowderManufacturing-metallurgy-particles

 

Characters of Metal Powders:

  • Shape:

It is influenced by the way it’s made. The shape may be spherical (atomization) (Electrolysis) flat or angular (Mechanical crushing). The particle shape influences the flow characteristics of powders.

  • Particle Size (Fineness) and size distribution:

Particle Size and Distribution are important factors which controls the porosity, Compressibility and amount of shrinkage. Proper particle size and size distribution are determined by passing the powder through a standard sieves ranging from 45 to 150 micrometer mesh.

  • Flowability:

The ability of the powders to flow readily and conform to the mould cavity. The flow rate helps to determine to possible production rate.

  • Compressibility:

It’s defines as the volume of initial powder (Powder loosely filled in cavity) to the volume of compact part. Depends on particle shape & size distribution.

  • Apparent Density:

The Apparent density depends on particle size is defined as the ratio of volume to weight of loosely filled mixture.

  • Green strength:

It refer to strength of a compact part prior to sintering. It depends on compressibility and helps to handle the parts during the mass production.

  • Purity:

Impurities affects sintering & Compacting Oxides & Gaseous impurities can be removed from the part during sintering by the use of a reducing atmosphere.

  • Sintering ability:

It is the ability which promotes bonding of particles by the application of heat.

 

Powder Metallurgy Process steps:

 

01-powder-metallurgy-process-step by step


 

01-powder metallurgy processes-mixing-finished product

 

02-finished product 

Manufacture of Metal Powders:

Methods:

  • Mechanical pulverization:

Machining, Drilling or Grinding of metals is used to convert them to powders.

  • Machining:

It Produces coarse particles (Flack form) especially Magnesium powders.

  • Milling or Grinding:

It suitable for brittle materials.

  • Shorting:

The process of dropping molten metal through a Sieve or small orifice in to water. This produces Spherical particles or larger size. Commonly used for metals of low melting point.

03-mechanical pulverization-milling-powder

04-crushing-shredding-conveyors-powder

 

  • Atomizing:

In this molten metal is forced through a nozzle, and a stream of compressed air, stream or Inert gas is directed on it break up into five particles. Powders obtained in irregular in shapes. Atomization commonly used for aluminium, Zinc, Tin, Cadmium and other metals of low melting point.

03-atomization-powder metallurgy

 

  • Electrolytic deposition:

It’s used mainly for producing iron and copper powders. These are dense structure with low apparent density. It consists of depositing metal on cathode plate by conventional electrolysis processes. The Cathode paltes are removed and the deposited powder is scraped off. The powder is wasted, dried, screened & oversized particles are milled or ground for fineness. The powder is further subjected to heat treatment to remove the work hardening effect.

  • Chemical reduction:

It’s used for producing iron, Copper, Tungsten, Molybdenum, Nickel & Cobalt powder process consists of reducing the metal oxides by means of carbon monoxide or Hydrogen. After reduction, the powder is usually ground & Sized.

 

Forming to shape:

    1. The process of mixing the powders is called Blending.
    2. The Loose powders are formed in to shape by compacting.

METALLURGY

August 23, 2011

Definition:

The Process of producing components from metallic powder parts made by powder metallurgy may contain non-metallic constituents to improve the bonding qualities and properties.

Number and variety of products made by powder metallurgy are continuously increasing:

    1. Tungsten Filaments for Lamps
    2. Contact Point relays
    3. Self lubricating bearings
    4. Cemented carbides for cutting tools etc.

02-PowderManufacturing-metallurgy-particles

 

Characters of Metal Powders:

  • Shape:

It is influenced by the way it’s made. The shape may be spherical (atomization) (Electrolysis) flat or angular (Mechanical crushing). The particle shape influences the flow characteristics of powders.

  • Particle Size (Fineness) and size distribution:

Particle Size and Distribution are important factors which controls the porosity, Compressibility and amount of shrinkage. Proper particle size and size distribution are determined by passing the powder through a standard sieves ranging from 45 to 150 micrometer mesh.

  • Flowability:

The ability of the powders to flow readily and conform to the mould cavity. The flow rate helps to determine to possible production rate.

  • Compressibility:

It’s defines as the volume of initial powder (Powder loosely filled in cavity) to the volume of compact part. Depends on particle shape & size distribution.

  • Apparent Density:

The Apparent density depends on particle size is defined as the ratio of volume to weight of loosely filled mixture.

  • Green strength:

It refer to strength of a compact part prior to sintering. It depends on compressibility and helps to handle the parts during the mass production.

  • Purity:

Impurities affects sintering & Compacting Oxides & Gaseous impurities can be removed from the part during sintering by the use of a reducing atmosphere.

  • Sintering ability:

It is the ability which promotes bonding of particles by the application of heat.

 

Powder Metallurgy Process steps:

 

01-powder-metallurgy-process-step by step


 

01-powder metallurgy processes-mixing-finished product

 

02-finished product 

Manufacture of Metal Powders:

Methods:

  • Mechanical pulverization:

Machining, Drilling or Grinding of metals is used to convert them to powders.

  • Machining:

It Produces coarse particles (Flack form) especially Magnesium powders.

  • Milling or Grinding:

It suitable for brittle materials.

  • Shorting:

The process of dropping molten metal through a Sieve or small orifice in to water. This produces Spherical particles or larger size. Commonly used for metals of low melting point.

03-mechanical pulverization-milling-powder

04-crushing-shredding-conveyors-powder

 

  • Atomizing:

In this molten metal is forced through a nozzle, and a stream of compressed air, stream or Inert gas is directed on it break up into five particles. Powders obtained in irregular in shapes. Atomization commonly used for aluminium, Zinc, Tin, Cadmium and other metals of low melting point.

03-atomization-powder metallurgy

 

  • Electrolytic deposition:

It’s used mainly for producing iron and copper powders. These are dense structure with low apparent density. It consists of depositing metal on cathode plate by conventional electrolysis processes. The Cathode paltes are removed and the deposited powder is scraped off. The powder is wasted, dried, screened & oversized particles are milled or ground for fineness. The powder is further subjected to heat treatment to remove the work hardening effect.

  • Chemical reduction:

It’s used for producing iron, Copper, Tungsten, Molybdenum, Nickel & Cobalt powder process consists of reducing the metal oxides by means of carbon monoxide or Hydrogen. After reduction, the powder is usually ground & Sized.

 

Forming to shape:

    1. The process of mixing the powders is called Blending.
    2. The Loose powders are formed in to shape by compacting.

MECHANICAL ENGG QUESTIONS-2

August 22, 2011

01-interview-interview questions-placement paper-interview questions and answers-mechanical interview tips-interview skills-interview preparation

  • Different between technology & engineering?

Engineering is application of science. Technology shows various methods of Engineering. A bridge can be made by using beams to bear the load,by an arc or by hanging in a cable; all shows different technology but comes under civil engineering and science applied is laws of force/load distribution.

  • how a diesel engine works in generator?

Diesel engine is a prime mover,for a generator,pump,and for vehicles etc.generator is connected to engine by shaft.mostly in thermal power plat ,there is an engine is used to drive generator to generate power.

  • WHAT IS THE OTHER NAME OF MICROMETER & VERNIER CALLIPER

Micrometer’s other name is Screw Gauze & Vernier caliper’s other name is slide caliper.

  • What is flashpoint?

Flash point: the lowest temperature at which the vapor of a combustible liquid can be ignited in air.

  • what is basic difference between impulse turbine and reaction turbine?

In impulse turbine, jet is used to create impulse on blades
which rotates the turbine and in reaction turbine, no jet
is used pressure energy is converted into kinetic energy.

In impulse turbine fluid enter& leave with same energy ,but in reaction turbine fluid enter with pressure energy&
leaves with kinetic energy

In impulse turbine all the pressure drops in nozzle only &
in reaction turbine pressure drops both fixed & moving
blades.the difference is due to blade profiles.

  • What is the need for drafting?

Drafting is the allowance give to casting process.it also used to remove the casting from mould without damage of
corners.

  • what is the difference between BSP thread and BSW thread?

The British Standard Pipe thread (BSP thread) is a family
of standard screw thread types that has been adopted
internationally for interconnecting and sealing pipe ends
by mating an external (male) with an internal (female) thread.
British Standard Whitworth (BSW) is one of a number of
imperial unit based screw thread standards which use the
same bolt heads and nut hexagonal sizes.

  • What is refrigerant?

Any substance that transfers heat from one place to another,
creating a cooling effect. water is the refrigerant in absorption machines.

  • The amount of carbon present in Cast Iron

Carbon is basically present in the form of cementite in cast iron.Its percentage lies in the range of 2.03-6.67(% by weight of cementite for Cast Iron.If the amount is less than the above range than it is stainless steel.

  • What are the loads considered when designing the Nut and Bolts?

Shear Loads & crushing loads

  • what is the effect of reheat on rankine cycle? 1.efficiency increases 2.work output increases 3. both 4. none of these.

1.Efficiency increases.

this prevents the vapor from condensing during its expansion which can seriously damage the turbine blades, and improves the efficiency of the cycle, as more of the heat flow into the cycle occurs at higher temperature.