Posted tagged ‘negative aspect’

Wall Climbing Robot (WCR)

September 29, 2011

You would rather hesitate to do the inspection and maintenance in a typically dangerous environment like the exterior of a tall building or a nuclear facility and pray to God to provide for someone else to do the same. Well, consider your prayers answered! A wall climbing Robot is willing to go through the trouble so that you can still keep smiling!

But, the idea of developing a wall climbing robot is always held back by the mighty force of GRAVITY!

And BEWARE. This won’t be an Easy Project for you. But this definitely is a fantastic Mechanical Engineering Seminar Topic, especially if you can demonstrate how it defies gravity.

You need to move against gravity to accomplish the task. Adhesion is what is required primarily, to help keep the robot firmly on to the wall. Reliable adhesion is a major factor in developing a WCR. Once a proper suction is obtained, locomotion is the next step.  It is also equally important to keep the weight as low as possible so that the effort to stick on to the wall is quite low.

Wall climbing robot

Adhesion is achieved by making use of

  1. Suction cups

Suction cups offer excellent grip (almost upto 1 atm). But, the negative aspect of using a suction cup is that it needs a vacuum pump. Since the vacuum pump is bulky and has high power consumption it is rather difficult to accommodate one in a WCR. Moreover, a suction cup would find itself useless when trying to stick to a rough surface.

2.    Electrostatic  chuck (ESC)

ESC achieves controlled adhesion by means of electrostatic forces.

Mobility is achieved by making use of an electric motor.

With these things in mind, I hope you would have got an insight of the Wall Climbing Robot.

 

Ref: http://spectrum.ieee.org/robotics/robotics-software/wallclimbing-robot-spies

USE YOUR BOOZE AS YOUR FUTURE FUEL

September 10, 2011

biofuel-from-whiskyTill date, all types of alcoholic drinks, or booze as they are commonly called, are produced only with the intention of drinking for socializing, fun, recreation and to drown one’s sorrows.
However the researchers of Abertay’s School of Contemporary Science have found a different and more beneficial use for alcoholic drinks.

The researchers here have been awarded the prestigious Carnegie Trust Research Grant to help them in the investigation of turning the residues that are found in the production of beer and whisky, into a form of renewable biofuel.

This is anticipated to be a project that takes about a year to find new methods of turning the spent grain of these drinks into an efficient biofuel, bioethanol.

Bioethanol is a much more environmentally friendly alternative to the present fossil fuels you find around you.
The reason it is considered better to using bioethanol, instead of traditional fuels for your fueling purposes is that it is CO2 neutral. It is also produces 65% less greenhouse gas emissions because it burns at temperatures that are at a much better level for fire safety.

With the supply of fuel being predicted to be finite, with half of the world’s oil supply already having been consumed in the passed 200 years, scientists are looking for simple and cost effective means of producing more biofuels from low value and waste products. there is a race going on for finding environmentally friendly alternatives to fuels for the future of the world, and this is why spent grains of alcohol and beer manufacture are considered to be a safe and efficient option for this.

Today Brazil and USA together produce over 70% of global supplies through the creation of bioethanol from sugarcane and maize starch respectively.
Though the US has beaten Brazil in its production, Brazil is still the largest exporter that sends about 3.2 billion liters of bioethanol in the last year alone.

Like all things in life, there are some negative aspects to this method of generating fuels. Both these countries tend to create an increased demand for land to grow the energy crops they require for generating bioethanol. In fact, in countries like Brazil, the safety of tropical forests too is threatened where even the benefits of using biofuel too may be cancelled out.

This is why researchers are considering using the waste products received from the manufacture of alcohol for creating biofuels. This may be a more complicated process of turning waste products into bioethanol. However it is a perfect example of a second generation biofuel.

The products used for the creation of this biofuel is usually disposed of or at the most, used for processing animal feed.

Instead of this, using them to produce fuel would be an attractive means of using this resource. However presently, there are many technical challenges and hindrances that have to be overcome to help in converting waste biomass into fuel.

And the search is still on for a more efficient and cost effective process for producing biofuels from alcoholic wastes.