Posted tagged ‘powder metallurgy’

Methods of Compacting / Powder Metallurgy

September 16, 2011

Methods are:

  1. Pressing
  2. Centrifugal Casting
  3. Slip Casting
  4. Extruding
  5. Gravity Casting
  6. Rolling
  7. Iso-static Moulding
  8. Explosive Compacting
  9. Fibre Metal processes

Pressing:

The function principles of the mechanic press machines differ in how to ensure the upper punch main movement by cams, spindles and friction drives, eccentric, knuckle-joints or by the round table principle, independent if the die or lower punch movement is realized by cams  or eccentric systems or other mechanically or hydraulically combined systems. The executions of auxiliary movements are also not decisive for a term-classification. These auxiliary movements can also base on pneumatic and hydraulic principles. In comparison to hydraulic press machines the maximum compaction forces of mechanical powder presses are limited and are placed in the range </= 5000 kN. For the requirements of wet and dry pressing techniques in the field of Technical Ceramics cams, eccentric, knuckle joint as well as round table presses have proved and tested, whereas cam presses especially used for wet-press-techniques of pourable materials. The range of compaction force of mechanical presses for products of the Technical Ceramics is < 2500 kN, what is caused from the less density of the ceramic materials. Normally the upper punch, lower punch and die systems of mechanical presses don’t work on base of multi subdivided punches.

01-powder pressing-metallurgy

Centrifugal Casting:

It employed for compacting heavy metal powders such as Tungsten Carbide. The powder is twirled in a mould and packed uniformly with pressures up to 3 MPa. The uniform density is obtained as a result of centrifugal force, acting on each particle of powder.

06-centrifugal-casting-process

05-centrifugal-casting-mold-metal-parts

Slip Casting:

Green compact of metal powder may be obtained by slip casting. The slurry, consisting of metal powder is poured in to porous mould. the free liquid in a slurry is absorbed by the mould tearing the solid layer of material on the surface of mould. The mould may be vibrated to increase the density of component. The Components are dried and sintered to provide sufficient strength.

07-slip casting-process-powder metallurgy

Extruding:

It employed to produce the components with high density and excellent mechanical properties.

Both hot and cold extrusion processes are used for compacting special materials. In cold extrusion the powder is mixed with binder and the mixture is often compressed into billet before being extruded. The binder must be removed before or during sintering. In hot extrusion the powder is compacted in to billet and is then heated to extruding temperature in non oxidizing atmosphere.

04-extrusion-direct-indirect-rod-pipe-process

Gravity Casting:

It used for making sheets having controlled porosity, the powder is poured on a ceramic tray to form a uniform layer and then sintered up to 48 hrs in Ammonia Gas at high temperature. The sheets are then rolled to desired thickness and to obtain a better surface finish. Porous sheets of stainless steel, made by this process are used for filters.

09-gravity-casting-metal-mould

10-indirect-gravity-casting-metal-mould

Rolling:

It employed for making continuous strips and rods having controlled porosity with uniform mechanical properties. In this method the metal powder is feed in to two rolls, which compress and interlock the powder particles to form a sheet of sufficient strength. It is then sintered, re-rolled and heat treated if necessary. Metal powders which can be compacted in to strips include Copper, Brass, Bronze, Nickel, Monel and Stainless Steel.

08-cold-rolling-process-plate-sheet-foil

Iso Static Moulding:

It used to obtain the products having uniform density and uniform strength in all directions. metal powder is placed in elastic mould (Deformable Mould) which is subjected to Gas pressure (65 to 650 MPa). After pressing the compact is removed.

02-cold-iso-static-pressing-compacting

Explosive Compacting:

It employed for pressing hard particles. The metal powder are placed in water proof bags which are immersed in water. It contained in a cylinder having wall thickness. Due to sudden deformation of change at the end of cylinder the pressure in the cylinder increases. The pressure used to press the metal powders to form green compact.

11-explosive-moulding-compacting

Fibre Metal Processes:

In this process, the metal fibers (Fine wires of Convenient length) are mixed with a liquid slurry and poured over a porous bottom. The liquid is drawed off leaving the green mat of fibre. The mat in which the fibers are randomly distributed is pressed and sintered. The products are mainly used for Filters, Battery Plates and Damping’s.

12-fibre-metal-processes

Powder Metallurgy / Introduction / Process / Methods

September 16, 2011

Definition:

The Process of producing components from metallic powder parts made by powder metallurgy may contain non-metallic constituents to improve the bonding qualities and properties.

Number and variety of products made by powder metallurgy are continuously increasing:

  1. Tungsten Filaments for Lamps
  2. Contact Point relays
  3. Self lubricating bearings
  4. Cemented carbides for cutting tools etc.

02-PowderManufacturing-metallurgy-particles

 

Characters of Metal Powders:

  • Shape:

It is influenced by the way it’s made. The shape may be spherical (atomization) (Electrolysis) flat or angular (Mechanical crushing). The particle shape influences the flow characteristics of powders.

  • Particle Size (Fineness) and size distribution:

Particle Size and Distribution are important factors which controls the porosity, Compressibility and amount of shrinkage. Proper particle size and size distribution are determined by passing the powder through a standard sieves ranging from 45 to 150 micrometer mesh.

  • Flowability:

The ability of the powders to flow readily and conform to the mould cavity. The flow rate helps to determine to possible production rate.

  • Compressibility:

It’s defines as the volume of initial powder (Powder loosely filled in cavity) to the volume of compact part. Depends on particle shape & size distribution.

  • Apparent Density:

The Apparent density depends on particle size is defined as the ratio of volume to weight of loosely filled mixture.

  • Green strength:

It refer to strength of a compact part prior to sintering. It depends on compressibility and helps to handle the parts during the mass production.

  • Purity:

Impurities affects sintering & Compacting Oxides & Gaseous impurities can be removed from the part during sintering by the use of a reducing atmosphere.

  • Sintering ability:

It is the ability which promotes bonding of particles by the application of heat.

 

Powder Metallurgy Process steps:

 

01-powder-metallurgy-process-step by step

 

01-powder metallurgy processes-mixing-finished product

 

02-finished product 

Manufacture of Metal Powders:

Methods:

  • Mechanical pulverization:

Machining, Drilling or Grinding of metals is used to convert them to powders.

  • Machining:

It Produces coarse particles (Flack form) especially Magnesium powders.

  • Milling or Grinding:

It suitable for brittle materials.

  • Shorting:

The process of dropping molten metal through a Sieve or small orifice in to water. This produces Spherical particles or larger size. Commonly used for metals of low melting point.

03-mechanical pulverization-milling-powder

04-crushing-shredding-conveyors-powder

 

  • Atomizing:

In this molten metal is forced through a nozzle, and a stream of compressed air, stream or Inert gas is directed on it break up into five particles. Powders obtained in irregular in shapes. Atomization commonly used for aluminium, Zinc, Tin, Cadmium and other metals of low melting point.

03-atomization-powder metallurgy

 

  • Electrolytic deposition:

It’s used mainly for producing iron and copper powders. These are dense structure with low apparent density. It consists of depositing metal on cathode plate by conventional electrolysis processes. The Cathode paltes are removed and the deposited powder is scraped off. The powder is wasted, dried, screened & oversized particles are milled or ground for fineness. The powder is further subjected to heat treatment to remove the work hardening effect.

  • Chemical reduction:

It’s used for producing iron, Copper, Tungsten, Molybdenum, Nickel & Cobalt powder process consists of reducing the metal oxides by means of carbon monoxide or Hydrogen. After reduction, the powder is usually ground & Sized.

 

Forming to shape:

  1. The process of mixing the powders is called Blending.
  2. The Loose powders are formed in to shape by compacting.