Posted tagged ‘production’

USE YOUR BOOZE AS YOUR FUTURE FUEL

September 10, 2011

biofuel-from-whiskyTill date, all types of alcoholic drinks, or booze as they are commonly called, are produced only with the intention of drinking for socializing, fun, recreation and to drown one’s sorrows.
However the researchers of Abertay’s School of Contemporary Science have found a different and more beneficial use for alcoholic drinks.

The researchers here have been awarded the prestigious Carnegie Trust Research Grant to help them in the investigation of turning the residues that are found in the production of beer and whisky, into a form of renewable biofuel.

This is anticipated to be a project that takes about a year to find new methods of turning the spent grain of these drinks into an efficient biofuel, bioethanol.

Bioethanol is a much more environmentally friendly alternative to the present fossil fuels you find around you.
The reason it is considered better to using bioethanol, instead of traditional fuels for your fueling purposes is that it is CO2 neutral. It is also produces 65% less greenhouse gas emissions because it burns at temperatures that are at a much better level for fire safety.

With the supply of fuel being predicted to be finite, with half of the world’s oil supply already having been consumed in the passed 200 years, scientists are looking for simple and cost effective means of producing more biofuels from low value and waste products. there is a race going on for finding environmentally friendly alternatives to fuels for the future of the world, and this is why spent grains of alcohol and beer manufacture are considered to be a safe and efficient option for this.

Today Brazil and USA together produce over 70% of global supplies through the creation of bioethanol from sugarcane and maize starch respectively.
Though the US has beaten Brazil in its production, Brazil is still the largest exporter that sends about 3.2 billion liters of bioethanol in the last year alone.

Like all things in life, there are some negative aspects to this method of generating fuels. Both these countries tend to create an increased demand for land to grow the energy crops they require for generating bioethanol. In fact, in countries like Brazil, the safety of tropical forests too is threatened where even the benefits of using biofuel too may be cancelled out.

This is why researchers are considering using the waste products received from the manufacture of alcohol for creating biofuels. This may be a more complicated process of turning waste products into bioethanol. However it is a perfect example of a second generation biofuel.

The products used for the creation of this biofuel is usually disposed of or at the most, used for processing animal feed.

Instead of this, using them to produce fuel would be an attractive means of using this resource. However presently, there are many technical challenges and hindrances that have to be overcome to help in converting waste biomass into fuel.

And the search is still on for a more efficient and cost effective process for producing biofuels from alcoholic wastes.

AUTOMOBILE ENGINES

September 10, 2011

The working of an automobile engine follows the same principle as an internal combustion engine. Air, from outside, enters the engine through the air cleaner and reaches the throttle plate.
The pedal in your car is the control for the amount of air that you would want to be taken in, and you control it by pressing on this gas pedal.
The air is then distributed through the intake manifold of the cylinders.

At some point fuel is injected into the air stream, and the mixture vaporizes and is drawn into the cylinders as they start their intake stroke.

This way, when the cylinder has reached its bottom, it has drawn in sufficient mixture. As it moves up, compressing the mixture, the spark plug ignites the mixture, and as the powerful gas formed expands, it pushes the cylinder to the bottom with the cylinder once again drawing in the mixture.

In designing automobile engines, you need to be a specialist in automobile engineering.
The consideration that is taken while designing such an engine is whether it should be a carburetor or a diesel one. carburetor engines are most commonly found in passenger cars and low capacity trucks, while trucks with a capacity over two tons are fitted with diesel engines, including dump trucks, trailer tractors and bus.

Increasingly the medium and low-capacity vehicles are being fitted with diesel engines, since the fuel consumption of these engines are 30% to 50% lower than the carburetor engines.
Diesel engines not only cost more, but maintenance is much more expensive than the other type of engine. Diesels require more metal parts per kilowatt.
The critical parts of diesel engines are made of alloy steel, and the fuel injection system is much more expensive than carburetor engines.

However, the cost of manufacturing carburetor engines has increased with the use of higher mechanical grade components, considering the thermal loads of the material used. At the same time the use of high alloys and increase in production costs have contributed to the higher price of such engines.

There is a sharp rise in using aluminum alloys in design of carburetor engines in passenger cars, and with the use of high octane petrol, the cost of operation of these cars have come down extensively. Using alloy steel in constructing the engine body and other parts of the engine, makes the car lighter and hence fuel consumption goes down substantially.

The main parts that are made of high steel alloy are the main casting of the engine, the cylinder head, water and oil pumps, oil filter housing, end covers of the generator and starter, and the intake pipes. It has been observed that by using high steel alloys, the weight of the car is reduced by 35%.

The power per liter, per unit of piston area, and the brake effective pressure are 6% to 8% lower in air-cooled engines, compared to engines having liquid cooling mechanism. This is due to the fact that in engines with liquid cooling there are great losses in cylinder charging caused by the high temperature in pipes, ducts in the head, cylinder walls and head, etc.

The size of air cooled engines are much bigger than the engines with liquid cooling having the same capacity, and this is because the cylinder axes difference is larger in air-cooled engines. Taking account of the radiator dimensions, if both engines are compared, the air-cooled engine will vary slightly with its height a little longer than or approximately the same length as the water-cooled engine. As far as the width and the height is concerned both engines are about the same.

The auxiliary units of the feed and ignition, and generator and starter systems are a bit difficult to fit on the body of the air-cooled engines, because of the presence of hoods and having a danger of over-heating.

INFRARED CURVING

August 23, 2011

01-infrared curing process-infrared spectrum wave-conduction, convection, radiation

The coatings and paint industries strive to provide high technology coatings while reducing volatile organic compounds and energy consumption to produce a finished coating. Conventionally Convection ovens are used to cure the coatings. But this process which uses electric heaters is not an optimal process and is associated with various disadvantages.

01-coating surface absorption-infrared energy -infrared curing

Improved technologies are available today, which can either replace or improve the convection curing process. Infrared Curing is such a technology which uses Infrared rays emitted by an Infrared emitter to provide the required cure. Infrared curing applies light energy to the part surface by direct transmission from an emitter. Some of the energy emitted will be reflected off the surface, some is absorbed into the polymer and some is transmitted into the substrate.

01-reduced cycle times on final cure-eliminating manual rack up time

This direct transfer of energy creates an immediate reaction in the polymer and cross linking begins quickly once the surface is exposed to the emitter. Infrared emitters are often custom manufactured to suit the production demand. The various aspects of Infrared curing and convection curing and the possibility of combining these two technologies into a singe system will be discussed in this seminar.

01-infrared wave-infrared heating-infrared emitter-infrared curing

How it Works

Infrared heating is a direct form of heating. The source of the heat (the infrared emitter or lamp) radiates: energy that is absorbed by the product directly from the emitter. That is, the heat energy is not transferred through an intermediate medium. This is one reason for  the  inherent high-energy efficiency of infrared systems. For  example, hot air heating  first needs to heat air; the air then heats the product by convection.

01-infrared emitter-infrared curing systems

Infrared  energy is directed  to  the  product. When  the  product absorbs this energy, it is then converted into heat. Infrared energy is dispersed from the source in much the same  way as visible light. Exposed product surfaces easily absorb  the  infrared  energy and  become  heated. Therefore, heating effectiveness is related to line-of-sight between the source and the product. Depending on the coating and/or product substrate material, this heat is further thermally conducted.


01-table-characteristics of commercially used infrared heat sources

The ability of the product to absorb energy is also known as its “emissivity”. A theoretical body that absorbs all energy is termed a “black body”. A black body has an emissivity of 1. A highly reflective body would have a low emissivity value, approaching 0. (Reflectivity is the inverse of emissivity).

The potential of a product to become heated with infrared is related to the following:
• Watt density (total output power) of the source
• Wavelength (temperature) of the source
• Distance from the source to the product
• Reflective characteristics of the oven cavity
• Air movement and temperature in the oven
• Time product is exposed to the source
• Ratio of exposed surface area to the mass of the product
• Specific heat of the product
• Emissivity of the product
• Thermal conductivity of the product

CURING

Curing is a process of baking surface coatings so as to dry them up quickly. Curing is a broad term which means all the techniques employed for the finishing operations incurred during part production. Curing essentially involves either the melting of the coating or evaporation of volatile fluids present in the coating by the application of heat energy.

Curing is given to a wide range of materials both organic and inorganic. Usually curing is given to materials like ,

” Paints
” Enamel
” Liquor
” Powder coatings
” Varnishes
” Epoxy coatings
” Acrylic coatings
” Primers Etc.

Curing is also given to Rubber and Latex .The principle used for curing can also be used for drying rice and grains.

01-infrared technology-infrared-convection systems-tunnel system

CONVECTION CURING

Convection ovens are usually used for curing purposes. Traditional convection ovens use heated forced air to provide the necessary cure. Convection ovens consist of a chamber lined on the inside with Electric heaters. The shape of the chamber will be in accordance to the shape or geometry of the part being cured. A series of blowers circulate the heated air around providing the required cure. This process depends on convection to transfer heat from hot air to body surface and conduction to transfer heat to the interior of the surface. The air being delivered is held at temperature using closed-loop control, which provides predictable, repeatable results. Typically a temperature of around 250-500 degree Fahrenheit is required for paint or powder. Though convection ovens are widely used today they have certain disadvantages, which chokes the overall productivity of a company
Disadvantages of convection ovens :

” Fairly long heating times:-

Convection is a slow process. It takes a considerable amount of time for the heaters to heat up and raise the temperature of air to the required level. This causes a lag in the process and hence the curing time increases. Longer curing time spells reduced assembly line movement. This in turn reduces productivity.

” High energy consumption:-

A convection column dryer uses around 2000 BTU(British Thermal Unit) of energy to remove 1 pound of moisture. They use around 7.7 KW of electrical energy to dry a ton of rice. These are significantly larger figures for any company trying to bring energy consumption under control. The additional use of blowers and compressors further increases energy consumption.

” Large floor area required:-

Convection ovens are bulky in nature. Due to the presence of compressors and blowers, additional space is needed, which in turn increases the floor area requirement.

” Air circulation is required:-

Convection heating requires a medium for transmission of heat. Hence blowers are employed for good circulation of heated air. This increases the overall cost of the equipment.

METALLURGY

August 23, 2011

Definition:

The Process of producing components from metallic powder parts made by powder metallurgy may contain non-metallic constituents to improve the bonding qualities and properties.

Number and variety of products made by powder metallurgy are continuously increasing:

    1. Tungsten Filaments for Lamps
    2. Contact Point relays
    3. Self lubricating bearings
    4. Cemented carbides for cutting tools etc.

02-PowderManufacturing-metallurgy-particles

 

Characters of Metal Powders:

  • Shape:

It is influenced by the way it’s made. The shape may be spherical (atomization) (Electrolysis) flat or angular (Mechanical crushing). The particle shape influences the flow characteristics of powders.

  • Particle Size (Fineness) and size distribution:

Particle Size and Distribution are important factors which controls the porosity, Compressibility and amount of shrinkage. Proper particle size and size distribution are determined by passing the powder through a standard sieves ranging from 45 to 150 micrometer mesh.

  • Flowability:

The ability of the powders to flow readily and conform to the mould cavity. The flow rate helps to determine to possible production rate.

  • Compressibility:

It’s defines as the volume of initial powder (Powder loosely filled in cavity) to the volume of compact part. Depends on particle shape & size distribution.

  • Apparent Density:

The Apparent density depends on particle size is defined as the ratio of volume to weight of loosely filled mixture.

  • Green strength:

It refer to strength of a compact part prior to sintering. It depends on compressibility and helps to handle the parts during the mass production.

  • Purity:

Impurities affects sintering & Compacting Oxides & Gaseous impurities can be removed from the part during sintering by the use of a reducing atmosphere.

  • Sintering ability:

It is the ability which promotes bonding of particles by the application of heat.

 

Powder Metallurgy Process steps:

 

01-powder-metallurgy-process-step by step


 

01-powder metallurgy processes-mixing-finished product

 

02-finished product 

Manufacture of Metal Powders:

Methods:

  • Mechanical pulverization:

Machining, Drilling or Grinding of metals is used to convert them to powders.

  • Machining:

It Produces coarse particles (Flack form) especially Magnesium powders.

  • Milling or Grinding:

It suitable for brittle materials.

  • Shorting:

The process of dropping molten metal through a Sieve or small orifice in to water. This produces Spherical particles or larger size. Commonly used for metals of low melting point.

03-mechanical pulverization-milling-powder

04-crushing-shredding-conveyors-powder

 

  • Atomizing:

In this molten metal is forced through a nozzle, and a stream of compressed air, stream or Inert gas is directed on it break up into five particles. Powders obtained in irregular in shapes. Atomization commonly used for aluminium, Zinc, Tin, Cadmium and other metals of low melting point.

03-atomization-powder metallurgy

 

  • Electrolytic deposition:

It’s used mainly for producing iron and copper powders. These are dense structure with low apparent density. It consists of depositing metal on cathode plate by conventional electrolysis processes. The Cathode paltes are removed and the deposited powder is scraped off. The powder is wasted, dried, screened & oversized particles are milled or ground for fineness. The powder is further subjected to heat treatment to remove the work hardening effect.

  • Chemical reduction:

It’s used for producing iron, Copper, Tungsten, Molybdenum, Nickel & Cobalt powder process consists of reducing the metal oxides by means of carbon monoxide or Hydrogen. After reduction, the powder is usually ground & Sized.

 

Forming to shape:

    1. The process of mixing the powders is called Blending.
    2. The Loose powders are formed in to shape by compacting.