Posted tagged ‘technology’

ADVANCE BATTERY STORAGE

August 26, 2011

01-EESTOR-Barium titanate Batteries-advanced battery storing technology-Ultra capacitor technology

For decades, battery storage technology has been a heavy weight on the back of scientific innovation. From cell phones to electric vehicles, our technological capabilities always seem to be several steps ahead of our ability to power them. Several promising new technologies are currently under development to help power the 21st century, but one small start-up looks especially well positioned to transform the way we think about energy storage.

01-barium_titanate_semi conductor-BaTiO3-Advanced Battery technology



Texas-based EEStor, Inc. is not exactly proposing a new battery, since no chemicals are used in its design. The technology is based on the idea of a solid state ultra capacitor, but cannot be accurately described in these terms either. Ultra capacitors have an advantage over electrochemical batteries (i.e. lithium-ion technology) in that they can absorb and release a charge virtually instantaneously while undergoing virtually no deterioration. Batteries trump ultra capacitors in their ability to store much larger amounts of energy at a given time.

EEStor’s take on the ultra capacitor — called the Electrical Energy Storage Unit, or EESU — combines the best of both worlds. The advance is based on a barium-titanate insulator claimed to increase the specific energy of the unit far beyond that achievable with today’s ultra capacitor technology. It is claimed that this new advance allows for a specific energy of about 280 watts per kilogram — more than double that of the most advanced lithium-ion technology and a whopping ten times that of lead-acid batteries. This could translate into an electric vehicle capable of traveling up to 500 miles on a five minute charge, compared with current battery technology which offers an average 50-100 mile range on an overnight charge. As if that weren’t enough, the company claims they will be able to mass-produce the units at a fraction the cost of traditional batteries.

“It’s a paradigm shift,” said Ian Clifford of ZENN Motor Co., an early investor and exclusive rights-holder for use of the technology in electric cars. “The Achilles’ heel to the electric car industry has been energy storage. By all rights, this would make internal combustion engines unnecessary.”

But this small electric car company isn’t the only organization banking on the new technology. Lockheed-Martin, the world’s largest defense contractor, has also signed on with EEStor for use of the technology in military applications. Kleiner Perkins Caufield & Byers, a venture capital investment firm who counts Google and Amazon among their early-stage successes, has also invested heavily in the company.

INFRARED CURVING

August 23, 2011

01-infrared curing process-infrared spectrum wave-conduction, convection, radiation

The coatings and paint industries strive to provide high technology coatings while reducing volatile organic compounds and energy consumption to produce a finished coating. Conventionally Convection ovens are used to cure the coatings. But this process which uses electric heaters is not an optimal process and is associated with various disadvantages.

01-coating surface absorption-infrared energy -infrared curing

Improved technologies are available today, which can either replace or improve the convection curing process. Infrared Curing is such a technology which uses Infrared rays emitted by an Infrared emitter to provide the required cure. Infrared curing applies light energy to the part surface by direct transmission from an emitter. Some of the energy emitted will be reflected off the surface, some is absorbed into the polymer and some is transmitted into the substrate.

01-reduced cycle times on final cure-eliminating manual rack up time

This direct transfer of energy creates an immediate reaction in the polymer and cross linking begins quickly once the surface is exposed to the emitter. Infrared emitters are often custom manufactured to suit the production demand. The various aspects of Infrared curing and convection curing and the possibility of combining these two technologies into a singe system will be discussed in this seminar.

01-infrared wave-infrared heating-infrared emitter-infrared curing

How it Works

Infrared heating is a direct form of heating. The source of the heat (the infrared emitter or lamp) radiates: energy that is absorbed by the product directly from the emitter. That is, the heat energy is not transferred through an intermediate medium. This is one reason for  the  inherent high-energy efficiency of infrared systems. For  example, hot air heating  first needs to heat air; the air then heats the product by convection.

01-infrared emitter-infrared curing systems

Infrared  energy is directed  to  the  product. When  the  product absorbs this energy, it is then converted into heat. Infrared energy is dispersed from the source in much the same  way as visible light. Exposed product surfaces easily absorb  the  infrared  energy and  become  heated. Therefore, heating effectiveness is related to line-of-sight between the source and the product. Depending on the coating and/or product substrate material, this heat is further thermally conducted.


01-table-characteristics of commercially used infrared heat sources

The ability of the product to absorb energy is also known as its “emissivity”. A theoretical body that absorbs all energy is termed a “black body”. A black body has an emissivity of 1. A highly reflective body would have a low emissivity value, approaching 0. (Reflectivity is the inverse of emissivity).

The potential of a product to become heated with infrared is related to the following:
• Watt density (total output power) of the source
• Wavelength (temperature) of the source
• Distance from the source to the product
• Reflective characteristics of the oven cavity
• Air movement and temperature in the oven
• Time product is exposed to the source
• Ratio of exposed surface area to the mass of the product
• Specific heat of the product
• Emissivity of the product
• Thermal conductivity of the product

CURING

Curing is a process of baking surface coatings so as to dry them up quickly. Curing is a broad term which means all the techniques employed for the finishing operations incurred during part production. Curing essentially involves either the melting of the coating or evaporation of volatile fluids present in the coating by the application of heat energy.

Curing is given to a wide range of materials both organic and inorganic. Usually curing is given to materials like ,

” Paints
” Enamel
” Liquor
” Powder coatings
” Varnishes
” Epoxy coatings
” Acrylic coatings
” Primers Etc.

Curing is also given to Rubber and Latex .The principle used for curing can also be used for drying rice and grains.

01-infrared technology-infrared-convection systems-tunnel system

CONVECTION CURING

Convection ovens are usually used for curing purposes. Traditional convection ovens use heated forced air to provide the necessary cure. Convection ovens consist of a chamber lined on the inside with Electric heaters. The shape of the chamber will be in accordance to the shape or geometry of the part being cured. A series of blowers circulate the heated air around providing the required cure. This process depends on convection to transfer heat from hot air to body surface and conduction to transfer heat to the interior of the surface. The air being delivered is held at temperature using closed-loop control, which provides predictable, repeatable results. Typically a temperature of around 250-500 degree Fahrenheit is required for paint or powder. Though convection ovens are widely used today they have certain disadvantages, which chokes the overall productivity of a company
Disadvantages of convection ovens :

” Fairly long heating times:-

Convection is a slow process. It takes a considerable amount of time for the heaters to heat up and raise the temperature of air to the required level. This causes a lag in the process and hence the curing time increases. Longer curing time spells reduced assembly line movement. This in turn reduces productivity.

” High energy consumption:-

A convection column dryer uses around 2000 BTU(British Thermal Unit) of energy to remove 1 pound of moisture. They use around 7.7 KW of electrical energy to dry a ton of rice. These are significantly larger figures for any company trying to bring energy consumption under control. The additional use of blowers and compressors further increases energy consumption.

” Large floor area required:-

Convection ovens are bulky in nature. Due to the presence of compressors and blowers, additional space is needed, which in turn increases the floor area requirement.

” Air circulation is required:-

Convection heating requires a medium for transmission of heat. Hence blowers are employed for good circulation of heated air. This increases the overall cost of the equipment.

QTC

August 23, 2011

01-3D tablet-touch screen-force sensitive touch screen-quantum tunnelling composite

QTC is a composite made from micron-sized metallic filler particles (Silicone Rubber) mixed into an elastomeric matrix. Quantum tunnelling composite is a flexible polymer that exhibits extraordinary electrical properties. In its normal state it is a perfect insulator, but when compressed it becomes a more or less perfect conductor and able to pass very high currents.

01-QTC-Graph-resistance vs force - quantum tunnelling composite

History:

First produced in 1996, QTC is a composite material made from conductive filler particles combined with an elastomeric binder, typically silicone rubber. The unique method of combining these raw materials results in a composite which exhibits significantly different electrical properties when compared with any other electrically conductive material.

01-QTC pills-variable resistor-applications of QTC using pills-touch switches

Types of QTC:

1. Elastomeric (Material: Silicone Rubber) (The particle move close together)

2. Ink / Coating Solvent or Aqueous Polymer

3. Granular Sensors

Working of Quantum tunnelling composite:

01-quantum tunnelling composite-QTC-smart flexible polymer-silicone rubber-pressure switching-sensing-metal like conductor-variable inductance principle-QTC working-QTC operation

QTC usually comes in the form of pills or sheet. QTC pills are just tiny little pieces of the material. The sheets are composed of one layer of QTC, one layer of a conductive material, and a third layer of a plastic insulator. While QTC sheets switch quickly between high and low resistances, QTC pills are pressure sensitive variable resistors.

Application:

01-QTC touch Screen-pills-force or pressure sensors-quantum tunneling composite screen-pressure sensitive variable resistors

– Touch switches (sheet)
– Force/pressure sensors (pills)
– Motor speed control using force (pills)

Benefits:

  • QTC is a pressure/force sensing material. It can be easily integrated into existing products to enable force sensing opportunities and solutions.
  • Product surfaces can be incorporated, coated or impregnated with QTC to impart the properties of force sensing into or onto the host surface.
  • QTC material can be formed or moulded into virtually any size, thickness or shape, permitting redesign of product interfaces and providing improved ergonomics, aesthetics and user comfort.
  • QTC is an enabling technology which is simple and reliable to use.
  • QTC material is durable – it has no moving parts to wear out.
  • QTC material is mechanically strong.
  • QTC material can be made to withstand extreme temperatures limits.
  • QTC material is versatile, both electrically and physically e.g. Its range and sensitivity can be altered. QTC material is also intrinsically safe – the material is a contactless switch, ideal for sparkless operation.
  • QTC material can be directly interfaced to standard electronic and electrical devices.
  • QTC material and/or technology can be customized for customer requirements, applications and products.

NANO GENERATOR

August 23, 2011

01-cellphone-charger-nanogenerator

After six years of intensive effort, scientists are reporting development of the first commercially viable Nano generator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity.

This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets.

The latest improvements have resulted in a Nano generator powerful enough to drive commercial liquid-crystal displays, light-emitting diodes and laser diodes. By storing the generated charges using a capacitor, the output power is capable to periodically drive a sensor and transmit the signal wirelessly.

01-nanogenerator-energize LED light and LCD display-future power generaration technologies-power production by body movement

If we can sustain the rate of improvement, the Nano generator may find a broad range of other applications that require more power.


Example:

  • Personal electronic devices powered by footsteps activating Nano generators inside the sole of a shoe;
  • Implanted insulin pumps powered by a heart beat; and
  • Environmental sensors powered by Nano generators flapping in the breeze.

01-heart-powered-pacemaker-insulin pumping by nano generator

Preparation:

The key to the technology is zinc oxide (ZnO) nanowires. ZnO nanowires are piezoelectric — they can generate an electric current when strained or flexed. That movement can be virtually any body movement, such as walking, a heartbeat, or blood flowing through the body. The nanowires can also generate electricity in response to wind, rolling tires, or many other kinds of movement.

01-concept-NanoGenerator-Zinc oxide Nano wires

The diameter of a ZnO nanowire is so small that 500 of the wires can fit inside the width of a single human hair. Scientist found a way to capture and combine the electrical charges from millions of the Nano scale zinc oxide wires. They also developed an efficient way to deposit the nanowires onto flexible polymer chips, each about a quarter the size of a postage stamp. Five Nano generators stacked together produce about 1 micro Ampere output current at 3 volts — about the same voltage generated by two regular AA batteries (about 1.5 volts each).

While a few volts may not seem like much, it has grown by leaps and bounds over previous versions of the Nano generator. “Additional nanowires and more Nano generators, stacked together, could produce enough energy for powering larger electronics, such as an iPod or charging a cell phone.”

NANO GENERATOR

August 23, 2011

01-cellphone-charger-nanogenerator

After six years of intensive effort, scientists are reporting development of the first commercially viable Nano generator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity.

This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets.

The latest improvements have resulted in a Nano generator powerful enough to drive commercial liquid-crystal displays, light-emitting diodes and laser diodes. By storing the generated charges using a capacitor, the output power is capable to periodically drive a sensor and transmit the signal wirelessly.

01-nanogenerator-energize LED light and LCD display-future power generaration technologies-power production by body movement

If we can sustain the rate of improvement, the Nano generator may find a broad range of other applications that require more power.


Example:

  • Personal electronic devices powered by footsteps activating Nano generators inside the sole of a shoe;
  • Implanted insulin pumps powered by a heart beat; and
  • Environmental sensors powered by Nano generators flapping in the breeze.

01-heart-powered-pacemaker-insulin pumping by nano generator

Preparation:

The key to the technology is zinc oxide (ZnO) nanowires. ZnO nanowires are piezoelectric — they can generate an electric current when strained or flexed. That movement can be virtually any body movement, such as walking, a heartbeat, or blood flowing through the body. The nanowires can also generate electricity in response to wind, rolling tires, or many other kinds of movement.

01-concept-NanoGenerator-Zinc oxide Nano wires

The diameter of a ZnO nanowire is so small that 500 of the wires can fit inside the width of a single human hair. Scientist found a way to capture and combine the electrical charges from millions of the Nano scale zinc oxide wires. They also developed an efficient way to deposit the nanowires onto flexible polymer chips, each about a quarter the size of a postage stamp. Five Nano generators stacked together produce about 1 micro Ampere output current at 3 volts — about the same voltage generated by two regular AA batteries (about 1.5 volts each).

While a few volts may not seem like much, it has grown by leaps and bounds over previous versions of the Nano generator. “Additional nanowires and more Nano generators, stacked together, could produce enough energy for powering larger electronics, such as an iPod or charging a cell phone.”

SKYACTIV TECHNOLOGY

August 23, 2011

01-2012-Mazda3-Skyactiv-Image-PETROL ENGINE-AUTOMATIC TRANSMISSION

Highlights of the SKYACTIV technologies:

  • SKYACTIV-G: a next-generation highly-efficient direct-injection gasoline engine with the world’s highest compression ratio of 14.0:1
  • SKYACTIV-D: a next-generation clean diesel engine with the world’s lowest compression ratio of 14.0:1
  • SKYACTIV-Drive: a next-generation highly-efficient automatic transmission
  • A next-generation manual transmission with a light shift feel, compact size and significantly reduced weight
  • A next-generation lightweight, highly-rigid body with outstanding crash safety performance
  • A next-generation high-performance lightweight chassis that balances precise handling with a comfortable ride


– First product to be equipped with SKYACTIV technology will be a Mazda Demio featuring an improved, fuel-efficient, next-generation direct-injection engine that achieves fuel economy of 30 km/L.

01-inline-skyactiv-technologies-chASSIS DESIGN-BODY DESIGN-DRIVE DESIGN-DIRECT INJECTION GASOLINE ENGINE


Overview of the SKYACTIV technologies

1. SKYACTIV-G
A next-generation highly-efficient direct-injection gasoline engine that achieves the world’s highest gasoline engine compression ratio of 14.0:1 with no abnormal combustion (knocking)
  • The world’s first gasoline engine for mass production vehicles to achieve a high compression ratio of 14.0:1
  • Significantly improved engine efficiency thanks to the high compression combustion, resulting in 15 percent increases in fuel efficiency and torque
  • Improved everyday driving thanks to increased torque at low- to mid-engine speeds
  • A 4-2-1 exhaust system, cavity pistons, multi hole injectors and other innovations enable the high compression ratio
2. SKYACTIV-D
A next-generation clean diesel engine that will meet global emissions regulations without expensive NOx after treatments — urea selective catalytic reduction (SCR) or a Lean NOx Trap (LNT) — thanks to the world’s lowest diesel engine compression ratio of 14.0:1
  • 20 percent better fuel efficiency thanks to the low compression ratio of 14.0:1
  • A new two-stage turbocharger realizes smooth and linear response from low to high engine speeds, and greatly increases low- and high-end torque (up to the 5,200 rpm rev limit)
  • Complies with global emissions regulations (Euro6 in Europe, Tier2Bin5 in North America, and the Post New Long-Term Regulations in Japan), without expensive NOx after treatment
3. SKYACTIV-Drive
A next-generation highly efficient automatic transmission that achieves excellent torque transfer efficiency through a wider lock-up range and features the best attributes of all transmission types
  • Combines all the advantages of conventional automatic transmissions, continuously variable transmissions, and dual clutch transmissions
  • A dramatically widened lock-up range improves torque transfer efficiency and realizes a direct driving feel that is equivalent to a manual transmission
  • A 4-to-7 percent improvement in fuel economy compared to the current transmission
4. SKYACTIV-MT
A light and compact next-generation manual transmission with crisp and light shift feel like that of a sports car, optimized for a front-engine front-wheel-drive layout
  • Short stroke and light shift feel
  • Significantly reduced size and weight due to a revised structure
  • More efficient vehicle packaging thanks to its compact size
  • Improved fuel economy due to reduced internal friction
5. SKYACTIV-Body
A next-generation lightweight, highly-rigid body with outstanding crash safety performance and high rigidity for greater driving pleasure
  • High rigidity and lightness (8 percent lighter, 30 percent more rigid)
  • Outstanding crash safety performance and lightness
  • A “straight structure” in which each part of the frame is configured to be as straight as possible. Additionally, a “continuous framework” approach was adopted in which each section functions in a coordinated manner with the other connecting sections
  • Reduced weight through optimized bonding methods and expanded use of high-tensile steel
6. SKYACTIV-Chassis
A next-generation high-performance lightweight chassis that balances precise handling with a comfortable ride feel to realize driving pleasure
  • Newly developed front strut and rear multilink suspension ensures high rigidity and lightness (The entire chassis is 14 percent lighter than the previous version.)
  • Mid-speed agility and high-speed stability — enhanced ride quality at all speeds achieved through a revision of the functional allocation of all the suspension and steering components

DISI ENGINE

August 23, 2011

02-direct-injection-engine-disi engine-gasoline engine

In developing the DISI engine, we aimed to cool the interior of the cylinder as much as possible by promoting fuel vaporization and uniform mixing of atomized fuel and air. This produces a high charging efficiency of the air-fuel mixture and a high compression ratio, which results in significant improvements in both torque and fuel efficiency.


Characteristics of the direct injection engine:

  • Fuel is injected from a tiny nozzle into a relatively large cylinder, so it has a high latent heat of vaporization, which efficiently cools the air within (in-cylinder cooling effect).

  • The air temperature in the cylinder decreases, which means:

  • (1) more air may be charged into the combustion chamber, which produces increased torque.

  • (2) the engine is less prone to knocking. This contributes to increased torque, and enables a higher compression ratio that also contributes to good fuel efficiency.


In a direct injection engine, however, the fuel skips the waiting period it would have to endure inside a standard engine and instead proceeds straight to the combustion chamber. This allows the fuel to burn more evenly and thoroughly. For the driver, that can translate to better mileage and greater power to the wheels.

In the past, direct injection posed too many technical hurdles to make it worthwhile for mass market gasoline automobiles. But with advances in technology and greater pressure to make cars run more cleanly and efficiently, it looks as if gasoline direct injection — or GDI as it’s referred to in industry lingo — is here to stay. In fact, most of the major car manufacturers make or plan to soon introduce gasoline cars that take advantage of this fuel saving and performance enhancing system.